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Abstract—In this paper, we study the VNF placement problem
in MEC-enabled 5G networks to meet the stringent reliability
and latency requirements of uRLLC applications. We pose
it as a constrained optimization problem, which is NP-hard,
to maximize the total reward obtained by a network service
provider by serving uRLLC service requests. We propose an
approximated randomized rounding approach to solve the NP-
hard optimization problem in polynomial time. We prove that the
proposed randomized approach achieves performance guarantees
while violating the resource constraints in a bounded way.
Furthermore, we present a greedy-heuristic approach to tackle
the violations in the resource constraints. Simulation results
show the proposed approach yields close-to-optimal performance.
Specifically, the total reward is within 5% and 10% of the optimal
solution using the proposed randomized rounding and greedy
approaches, respectively.

Index Terms—Mobile edge computing, Resource allocation,
Optimization, Ultra-reliable and low-latency communications, 5G

I. INTRODUCTION

The emergence of the mobile edge computing (MEC)
framework facilitates network service providers to meet the
stringent latency requirements of many applications, such as
autonomous driving and remote surgery, by placing comput-
ing functionalities near the users. Furthermore, the MEC-
based networking has proliferated with the introduction of
5G (and beyond) networks. With MEC, a service can be
hosted either at the edge cloud or at the central cloud,
depending on its requirements. Recent studies show that MEC
is helpful in meeting the stringent latency requirements of
the above-mentioned applications while leveraging the benefits
of software-defined networking (SDN) and network function
virtualization (NFV) [1]–[3].

The applications supported by 5G (and beyond) are broadly
categorized as enhanced mobile broadband (eMBB), ultra-
reliable and low-latency communications (uRLLC), and mas-
sive machine-type communications (mMTC) [4]. While there
has been significant progress in addressing the high-bandwidth
and low-latency requirements of 5G applications [5], ensuring
high reliability is still challenging for uRLLC applications.
This is due to the coupling of high-reliability and low-latency
requirements of uRLLC applications that makes the network
modeling very challenging [6].

In this paper, we study the VNF placement problem in
an MEC-enabled 5G network while considering the stringent

availability1 requirements of uRLLC applications. We pose
this as a constrained optimization problem, which captures
multi-dimensional MEC networking resources, such as CPU
and RAM, and availability requirements of uRLLC service
requests, to maximize the total reward obtained by the service
provider. Furthermore, we propose an approximation algorithm
to solve the NP-hard optimization problem with performance
bounds. The key contributions in this paper are as follows:

• We mathematically model the VNF placement as a con-
strained optimization problem to maximize the total re-
ward to a service provider by serving incoming requests.
The problem considers multi-dimensional networking re-
sources and availability requirements to meet the stringent
reliability of uRLLC applications in 5G.

• We propose an approximation algorithm based on ran-
domized rounding techniques [7] to solve the NP-hard
optimization problem in polynomial time. Furthermore,
we show that it provably achieves performance guarantees
while violating the resource constraints in a bounded way.

• We propose a greedy-heuristic approach based on the
randomized rounding solution to tackle the violations
in resource constraints, if any. The simulation results
show that the proposed approximation algorithm per-
forms close-to-optimal while violating the constraints in a
bounded way. Furthermore, the proposed greedy approach
also yields competitive performance to the optimal solu-
tion.

The rest of the paper is organized as follows. Section II
highlights the state-of-the-art solution approaches for the VNF
placement problem in 5G networks. Section III presents the
detailed network model and the optimization problem. Sec-
tion IV presents the proposed approximation algorithm while
analyzing the bounds on the performance, and the proposed
greedy approach. The efficacy of the proposed scheme is
studied in Section V. Finally, Section VI concludes the paper
with future research directions.

II. RELATED WORK

This section discusses the existing works on VNF placement
and resource allocation in 5G networks while highlighting the
key differences between them and the proposed scheme.

1In this work, the terms ‘reliability’ and ‘availability’ are used interchange-
ably to denote the same thing.Acc
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Yala et al. [1] studied availability and latency-aware VNF
placement problem at MECs and the central cloud. The
authors modeled it as a trade-off between the service latency
and the availability of VNFs. For latency-critical services,
the placement of VNFs is preferred at the MECs over the
central cloud. In contrast, the VNFs related to availability-
critical services are placed in the central cloud. However, as
discussed in [8], the uRLLC use cases in 5G have stringent
latency and availability requirements, which must be ensured.
Furthermore, the authors propose a genetic algorithm-based
approach for which the solution may not converge even after
multiple iterations.

Poularakis et al. [3] studied service placement and request
routing problem in an MEC-enabled network, where base-
stations are enabled with storage and compute resources and
act as edge clouds. The authors framed the optimization
problem as the minimization of request routing to the central
cloud while adhering to the associated constraints. Similarly,
Yang et al. [9] framed the VNF placement and routing problem
as the minimization of service delay while considering the net-
working resources and request-specific requirements. Both [3]
and [9] proposed approximation algorithms to solve the NP-
hard optimization problems in polynomial time. Behravesh et
al. [10] studied the joint user association and VNF placement
problem in the network consisting of MECs and the central
cloud. The authors formulated it as a mixed integer linear
program (MILP) and solved it using an optimization problem
solver. However, it is unsuitable for large-scale deployment
due to the NP-hardness of the optimization problem.

Synthesis: While [3], [9] are the closest ones to our work,
they did not consider the availability of VNFs, which makes
the problem challenging due to the limited networking re-
sources at the MECs. Furthermore, while the other existing
schemes tried to address the issues and challenges in support-
ing the stringent QoS requirements, very few are scalable and
yield competitive performance to the optimal solution.

III. SYSTEM MODEL

Figure 1 presents an overview of the MEC-assisted VNF
placement in 5G networks. The VNFs associated with a
request are placed at the MECs and/or the central cloud.

Edge network

Redundant 

placement of 

VNFs at MECs

gateway

VNFs
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Central Cloud
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Fig. 1: VNFs placement in MEC-enabled 5G networks

In this work, we consider the following:

• VNFs in 5G network are categorized as control-plane
functions (CPFs) and user-plane functions (UPFs). The
CPFs are pre-placed either at the MEC, central cloud, or
both.

• The VNFs are placed in the form of a virtual machine
(VM) or a container. Furthermore, we focus on the UPF
placement at the MECs in the network. The requests that
cannot be served by MEC are either dropped or served
by central cloud while considering their requirements.

• Considering issues with latency in serialized HTTP/JSON
connection [11], all UPFs associated with a service are
placed at a single physical machine (PM).

• A request is replicated and assigned to multiple MECs for
providing services based on the availability requirement.

• The first error-free service-response returns to the gate-
way is considered. Hence, end-to-end latency and avail-
ability are improved.

A. Network Model
Let there be a set of MECs denoted asM = {1, 2, · · · ,M}.

Each MEC m ∈ M has a certain amount of CPU and
RAM resources to host VNFs, denoted by Cm and Dm,
respectively. The service provider receives service requests
denoted by a set R = {1, 2, · · · , R}. Each request r ∈ R
has a certain amount of CPU and RAM resource requirements
according to the UPFs associated with the service, denoted by
cr and dr, respectively. Furthermore, each request is associated
with a threshold on service failure ϵr to meet its availability
requirement and a reward ζr obtained by the service provider
if the request is served.

B. Latency Model
As shown in Figure 1, a request can be served either at

the MECs or at the central cloud. We also consider that the
service execution rate at a VNF is independent of its placement
(whether at MEC or the central cloud) when the same amount
of resources are allocated to the VNF. Therefore, in this work,
we consider that the placement of VNFs at the MECs helps
in reducing the end-to-end latency similar to the existing
works [1], [9], [12].

Considering the low-latency requirements of uRLLC appli-
cations, we aim to serve the requests by placing VNFs at the
MECs as much as possible to reduce the service delay.

C. Availability Model
A service may not be available due to the following reasons:
• At least one VNF associated with the service fails due to

software failure of the VNF itself [13]. Let the probability
of a VNF failure be ϵv.

• A VNF fails due to the failure of the host physical
machine [13]. Let the probability of a physical machine
failure be ϵp.

As all the VNFs associated with a request are placed at
the same MEC, the total probability of failure of a service is
calculated as:
ϵm = Pr [VNF fails|PM is OK] + Pr [VNF fails|PM fails]

= (ϵv + ϵp) .Acc
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Now, for a given request r ∈ R with a threshold failure
requirement ϵr, the following condition needs to be satisfied
to meet the availability requirement:

[ϵm]
Ψr ≤ ϵr, (1)

where Ψr denotes the number of redundant placement of
VNFs at MECs for request r. To get the number of redundant
placement Ψr, we rewrite (1) as follows:

Ψr = ⌈logϵm
(ϵr)⌉. (2)

D. Optimization Problem
Given the MECs with resources and the requests with

requirements, the objective of the service provider is to
maximize the total reward by serving requests at the MECs.
Mathematically,

Maximize PIP =
∑
r∈R

ζryr, (3)

subject to

xr,m and yr ∈ {0, 1},∀r ∈ R,∀m ∈M,∑
m∈M

xr,m ≥ Ψryr,∀r ∈ R,

yr ≤ 1,∀r ∈ R,∑
r∈R

crxr,m ≤ Cm,∀m ∈M,∑
r∈R

drxr,m ≤ Dm,∀m ∈M.

(4a)

(4b)

(4c)

(4d)

(4e)

Equation (3) denotes the objective, which is to maximize the
total reward by serving requests at the MECs, where yr = 1 if
the request r is served by the MEC, else 0, as denoted in (4a).
The service requests that cannot be served at the MEC are
either dropped to forwarded to the central cloud. Equation (4a)
also represents binary decision variables on VNF placement
at MECs, where xr,m = 1 if VNFs associated with request
r are placed at MEC m, else 0. Equation (4b) ensures that
the availability requirement is satisfied. Furthermore, it also
ensures that if a request is served, UPFs associated with it
must be placed in the network. A request can be admitted at
most once, which is ensured in (4c). Finally, (4d) and (4e)
present that the CPU and RAM utilizations at the MECs are
within the total CPU and RAM capacities, respectively. The
optimization problem is a variation of the multi-constraint
knapsack problem, which is NP-hard in general [14]. In the
subsequent section, we propose a polynomial time approxima-
tion algorithm to solve this problem.

IV. SOLUTION APPROACH: RANDOMIZED ROUNDING

A. Approximated Solution
We first relax the binary variables to continuous ones to

solve the problem (3) in polynomial time. Mathematically, the
optimization problem is represented as:

Maximize PLR =
∑
r∈R

ζryr, (5)

subject to
(4b), (4c), (4d), and (4e),
xr,m and yr ∈ [0, 1]. (6a)

The problem in (5) can be solved using standard LP-solvers.
We use the IBM CPLEX [15] to get the solution. Let the
solution be x̃ and ỹ. Now, we round the solution of the
relaxed problem using the randomized rounding approach [7],
as presented in Algorithm 1.

Algorithm 1 Randomized rounding algorithm
Inputs: Set of MECs:M, each with Cm and Dm, ∀m ∈M;

Set of requests: R, each with cr, dr, ζr, and ϵr, ∀r ∈ R;
Output: Binary solution: x̂ and ŷ

1: Calculate Ψr using (2)
2: Solve the optimization problem in (5) to obtain (x̃, ỹ)
3: for r ∈ R do
4: for m ∈M do
5: Set x̂r,m = 1 with probability x̃r,m

and x̂r,m = 0 with probability (1− x̃r,m)

6: if
∑

m∈M
x̂r,m ≥ Ψr then

7: Set ŷr = 1 with probability ỹr
and ŷr = 0 with probability (1− ỹr)

8: return (x̂, ŷ)

From the construction of Algorithm 1, a request is either
served at the MECs or dropped (or can be served by the central
cloud). Therefore, the constraint (4c) is always satisfied.
Furthermore, the Step 6 (in Algorithm 1) satisfies the redun-
dancy constraint (4b) to meet the availability requirements.
And, the values of xr,m and yr are always either 0 or 1,
which satisfies (4a). Now, we check whether the remaining
constraints (4d) and (4e) are satisfied.

Lemma 1. The solution returned by Algorithm 1 satisfies the
CPU and RAM capacity constraints in expectation.

Proof. CPU capacity constraint: The expected CPU utiliza-
tion of an MEC m ∈M is given by

E

[∑
r∈R

x̂r,mcr

]
=

∑
r∈R

Pr [x̂r,m = 1] cr

=
∑
r∈R

x̃r,mcr ≤ Cm, (7)

where the last equality holds as {x̂r,m} = 1 with success prob-
abilities {x̃r,m} (refer to Step 5 in Algorithm 1). Furthermore,
the inequality holds due to the constraint (4d).

RAM capacity constraint: The expected RAM utilization
of an MEC m ∈M is given by

E

[∑
r∈R

x̂r,mdr

]
=

∑
r∈R

Pr [x̂r,m = 1] dr

=
∑
r∈R

x̃r,mdr ≤ Dm. (8)Acc
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Similar to (7), the last equality and the inequality hold due to
the success probability and constraint (4e), respectively.

Lemma 2. The total reward returned by Algorithm 1 is in
expectation equal to that of the optimal fractional solution.

Proof. The expected reward obtained by the service provider
by serving requests at the MECs is given by

E

[∑
r∈R

ζrŷr

]
=

∑
r∈R

Pr [ŷr = 1] ζr =
∑
r∈R

ỹrζr, (9)

where the last equality holds as {ŷr = 1} with success
probabilities {ỹr}.

Though the constraints (4d) and (4e) are satisfied in expec-
tation, they can be violated in practice. Therefore, we give the
theoretical bounds on the violation of the constraints below.

Lemma 3. The CPU load on an MEC m ∈ M returned by
the Algorithm 1 will not exceed its capacity by more than a
factor of (1 + δc) =

3 ln(R)
µc

+ 4 with high probability.

Proof. We are interested in finding the probability that the
constraint is violated. Mathematically,

Pr

[∑
r∈R

x̂r,mcr ≥ (1 + δc)
∑
r∈R

x̃r,mcr

]
. (10)

We will apply the Chernoff Bound [7] to get a theoretical
bound on the above probability. Before that, we normalize the
expression in (10), which is given by:

Pr

[∑
r∈R

x̂r,mcr
αc

≥ (1 + δc)
∑
r∈R

x̃r,mcr
αc

]
,

where αc = max{cr,∀r ∈ R},

⇒ Pr

[∑
r∈R

zc
r,m ≥ (1 + δc)µc

]
,

where µc =
∑
r∈R

x̃r,mcr
αc

.

(11)

(12)

Now, for a given MEC m ∈ M, zc
r,m ∈ [0, 1], ∀r ∈ R,

are independent random variables (RVs) with expected total
value E

[∑
r∈R zc

r,m

]
= µc. By following the Chernoff bound

(upper tail) [7], we get

Pr

[∑
r∈R

zc
r,m ≥ (1 + δc)µc

]
≤ exp

−δ2cµc
2+δc , which implies to

Pr

[∑
r∈R

x̂r,mcr
αc

≥ (1 + δc)
∑
r∈R

x̃r,mcr
αc

]
≤ exp

−δ2cµc
2+δc ,

which is equivalent to

Pr

[∑
r∈R

x̂r,mcr ≥ (1 + δc)
∑
r∈R

x̃r,mcr

]
≤ exp

−δ2cµc
2+δc . (13)

Next, we need to find a value of δc for which the probability
value quickly goes to zero as the number of requests increases.
To do that, we set

exp
−δ2cµc
2+δc ≤ 1

R3
, (14)

which means δc must satisfy the below inequality:

δc ≥
3

2

ln(R)

µc
+

√
9

4

(
ln(R)

µc

)2

+
6 ln(R)

µc
. (15)

To hold the above condition true, δc must be as follows:

δc =
3 ln (R)

µc
+ 3. (16)

Finally, we upper bound the probability that any of the
MECs CPU capacity is violated using Union bound [16] as:

Pr

[ ⋃
m∈M

∑
r∈R

zc
r,m ≥ (1 + δc)µc

]

≤
∑

m∈M
Pr

[∑
r∈R

zc
r,m ≥ (1 + δc)µc

]

≤
∑

m∈M
Pr

[∑
r∈R

x̂r,mcr
αc

≥ (1 + δc)
∑
r∈R

x̃r,mcr
αc

]

≤M
1

R3
≤ 1

R2
, where R = |R| and M = |M|. (17)

The last inequality in (17) holds as the number of MECs M is
much lesser than the number of requests R in practice (M <
R). Therefore, the CPU capacity of any MEC m ∈ M will
not exceed by more than a factor of (1 + δc) = 3 ln(R)

µc
+ 4

with high probability.

Lemma 4. The RAM load on an MEC m ∈ M returned by
the Algorithm 1 will not exceed its capacity by more than a
factor of (1 + δd) =

3 ln(R)
µd

+ 4 with high probability, where

µd =
∑

r∈R
x̃r,mdr

αd
, and αd = max{dr,∀r ∈ R}.

Proof. The proof for Lemma 4 follows the proof of the upper
bound of the CPU load in Lemma 3.

Now, we study the theoretical bound on the objective value.

Lemma 5. The objective value returned by Algorithm 1 is
atmost (1 −

√
4 ln(R)
µopt

) times worse than the optimal solution

of the relaxed problem, where µopt =
∑

r∈R
ζr ỹr

αopt
and αopt =

max{ζr,∀r ∈ R}.

Proof. Let δopt =
√

4 ln(R)
µopt

. Mathematically, we are interested
in finding the probability that the above lemma does not hold,
i.e., the following condition is true:

Pr

[∑
r∈R

ζrŷr ≤ (1− δopt)
∑
r∈R

ζrỹr

]
. (18)

We will apply the Chernoff bound (lower tail) [7] to find
the bound. Before that, we normalize both sides of (18) asAcc
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follows:

Pr

[∑
r∈R

ζrŷr
αopt

≤ (1− δopt)
∑
r∈R

ζrỹr
αopt

]
,

where αopt = max{ζr,∀r ∈ R},

⇒ Pr

[∑
r∈R

zopt
r ≤ (1− δopt)µopt

]
.

(19)

(20)

The values of zopt
r ∈ [0, 1], ∀r ∈ R, are independent RVs,

and E
[∑

r∈R zopt
r

]
= µopt. Now, using the Chernoff bound

(lower-tail) [7], we get

Pr

[∑
r∈R

zopt
r ≤ (1− δopt)µopt

]
≤ exp

−δ2optµopt
2 , which implies

Pr

[∑
r∈R

ζrŷr
αopt

≤ (1− δopt)
∑
r∈R

ζrỹr
αopt

]
≤ exp

−δ2optµopt
2 ,

which is equivalent to

Pr

[∑
r∈R

ζrŷr ≤ (1− δopt)
∑
r∈R

ζrỹr

]
≤ exp

−δ2optµopt
2 . (21)

Now, we upper bound the right hand side of the inequality
in (21) by 1

R2 , and we get

exp
−δ2optµopt

2 ≤ 1

R2
⇒ δopt ≥

√
4 ln(R)

µopt
. (22)

Therefore, the lowest value of δopt is
√

4 ln(R)
µopt

for which the
above condition holds. Thus, with high probability, the objec-
tive value returned by the randomized algorithm is at most(
1−

√
4 ln(R)
µopt

)
times worse than the the optimal solution of

the relaxed problem.

B. Greedy Solution

The solution returned by the randomized algorithm (refer
to Algorithm 1) may not be feasible if there is a violation in
at least one of the capacity constraints – CPU and RAM, as
mentioned in Section IV-A. Therefore, we propose a feasible
solution for the given approximated solution. Algorithm 2
presents a greedy approach to obtain a feasible solution. We
check the over-utilized MECs and remove requests one-by-one
according to their reward2 until the approximated solution is
feasible (refer to Step 9 in Algorithm 2). Therefore, the total
objective value obtained by the greedy approach may be lower
than the approximated solution. We note that any other greedy
approach can be applied to obtain a feasible solution.

V. PERFORMANCE EVALUATION

In this section, we conduct the experiment to show the
effectiveness of the proposed scheme. Table I presents the
parameters and their values used for the experiment considered
based on the literature [1], [3], [8], [17], [18].

2Request with the smallest reward is removed first.

Algorithm 2 Feasible solution: Greedy algorithm
1: Get the solution (x̂, ŷ) from Algorithm 1
2: for m ∈M do
3: for r ∈ R do
4: Calculate CPU utilization Cut

m

5: Calculate RAM utilization Dut
m

6: while Cut
m > Cm or Dut

m > Dm do
7: R̃ ← Get requests with x̂r,m = 1
8: r̃ ← Get request from R̃ with the lowest ζr
9: Set x̂r,m = 0,∀m ∈M, and ŷr = 0

10: Cut
m ← Cut

m − cr and Dut
m ← Dut

m − dr

11: return Reward ←
∑

r∈R ζrŷr

We deploy a network with 10 MECs, in which a service
request can be served from any of the MECs by placing the
VNFs associated with the request. We note that the VNFs
associated with two service-types are completely isolated and
independent. The CPU and RAM capacities of an MEC
are chosen at uniform random from the range specified in
the Table I. Furthermore, the failure probabilities of MECs
and VNFs are considered from [1]. We generate requests
considering the VNFs required to support different uRLLC
use-case scenarios [17].

TABLE I: Simulation settings

Parameter Value
Number of MECs 10
CPU at each MEC [32, 56] core
RAM at each CPU [32, 80] GB
Failure of a VNF (ϵv) [1] 0.001
Failure of a PM (ϵp) [1] 0.004
Number of requests {30, 35, 40, 50, 60}
Avail. requirements (1− ϵr) [8] {0.99, 0.999, 0.9999}
Reward (ζr) [6, 8] × (1− ϵr)
CPU and RAM requirements Based on [17]

A. Results and Discussion

We present two variations of the proposed scheme — ran-
domized rounding (Algorithm 1) and greedy algorithm (Algo-
rithm 2). We compare the proposed scheme with the optimal
solution to the relaxed problem. Henceforth, we refer LR,
RR, and Greedy to present the optimal solution, randomized
rounding solution, and greedy solution, respectively.

We take the average of 50 runs of the experiment and
present the results with 95% confidence interval. We con-
sider the following performance metrics — total reward, and
percentages of resource utilization and requests served. The
total reward is presented with varying number of requests and
resources at the MEC. The resource utilization includes the
percentage of CPU and RAM utilization at the MEC.

1) Total Reward: The service provider’s objective is to
maximize the total reward by serving service requests, as
mentioned in Section III. To understand the impact of different
number of requests and networking resources at the MECs,
we present the total reward with varying number of requestsAcc
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and networking resources in Figure 2 using LR, RR, and
Greedy. Figures 2(a), 2(b) and 2(c) present the total reward
with varying number of requests, CPU, and RAM resources,
respectively, while the other resources are fixed. We see
that RR and Greedy yield competitive performance to LR.
Furthermore, it is observed that the total reward does not
increase even after increasing the resources after a certain
point. This is because more requests cannot be served due
to the limitation in the other networking resources.
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Fig. 2: Total reward

2) Resource Utilization and Requests Served: Figures 3(a)
and 3(b) show the percentages of CPU and RAM resource
utilizations at the MECs, respectively, with varying numbers of
requests. In all cases, we see that resource utilization increases
with an increase in the number of requests for all schemes.
This is because more requests are served by the MECs to
maximize the reward. However, the utilization at the MECs
gets saturated after a certain number of requests. Furthermore,
we note that resource utilization for RR and Greedy is lower
by 8% and 18%, respectively, than LR. This is because some
requests are not served in the rounding procedure and further
in the Greedy approach. Figure 3(c) shows the percentage
of requests served by the service provider. It also provides
competitive performance to the LR.
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Fig. 3: Percentage of CPU and RAM utilization, and served
requests

In summary, the proposed approaches, RR and Greedy, yield
competitive performance to the optimal solution to the relaxed
optimization problem, LR, in terms of the total reward in
polynomial time.

VI. CONCLUSION

In this paper, we studied the VNF placement problem in
MEC-enabled 5G networks while considering the reliability
and latency requirements of uRLLC applications. We proposed
an approximation algorithm based on the randomized rounding

techniques to solve the NP-hard optimization problem in poly-
nomial time. Furthermore, we proved the theoretical bounds of
the proposed solution with respect to the optimal solution to
the relaxed optimization problem. Finally, we presented sim-
ulation results to show the efficacy of the proposed approach.
In this work, we considered that VNFs are independent and
isolated from one service-type to another. As a future research
direction, we are interested in studying the impact on the
performance when VNFs are shared among multiple service-
types.
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