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Abstract—Mobile Edge Computing (MEC), empowered by
deep learning techniques, plays a pivotal role in enabling real-
time service delivery for applications with stringent latency
requirements in 5G and beyond-5G (6G) networks. Although
numerous studies have proposed resource allocation and model
placement schemes for MEC environments, most of these efforts
remain theoretical and are validated primarily through simula-
tions or emulations.

In this paper, we present a practical implementation of an
MEC-based smart surveillance system deployed and tested on a
5G testbed. The system aims to detect human presence, identify
intrusions, and monitor loitering behavior in real time. To
achieve this, we employ two state-of-the-art deep learning models
– InsightFace for intrusion detection and YOLOv8-Pose for
loitering analysis. The models are deployed at the MEC of the
5G testbed to minimize latency with optimize inference efficiency.
Experimental results demonstrate that the proposed system can
accurately detect and monitor individuals within a few hundred
milliseconds, validating the effectiveness of MEC-based deep
learning deployment for real-time surveillance. Furthermore, we
discuss key challenges, limitations, and lessons learned from our
testbed-based implementation.

Index Terms—Smart surveillance, 5G/6G-based Internet-of-
Things, Intrusion Detection, Face Recognition, Deep Learning

I. INTRODUCTION

The evolution of cellular networks into fifth- and sixth-
generation (5G/6G) systems has achieved remarkable suc-
cess in supporting a wide range of emerging applications,
including autonomous vehicles, smart surveillance, and smart
healthcare [1]. These real-time applications impose stringent
quality-of-service (QoS) demands in terms of latency, re-
liability, and bandwidth. Mobile Edge Computing (MEC)
integrated with 5G/6G networks has emerged as a promising
paradigm to meet these latency-sensitive requirements by
placing the services near to the end-users [1]–[3].

Recent research has explored the use of 5G-enabled smart
surveillance systems for crowd monitoring and object detec-
tion [4]–[6]. Ahmed et al. [7] investigated edge-based person
detection using transfer learning, employing the CenterNet
deep learning model to identify individuals from smart camera
feeds. Similarly, Wei et al. [8] proposed a port surveillance
framework for detecting human and vehicular movements.
However, beyond general person detection, there remains a

critical need to address more complex surveillance tasks such
as intrusion detection and loitering behavior analysis.

Several subsequent studies [8]–[12] have proposed MEC-
assisted surveillance architectures, though most have remained
theoretical, focusing on analytical or simulation-based evalua-
tions. To bridge this gap, this paper presents the development
of a practical MEC-based real-time smart surveillance system
empowered by artificial intelligence and machine learning
(AI/ML) techniques within 5G/6G environments. The pro-
posed system integrates live Real-Time Streaming Proto-
col (RTSP)-based video feeds from cameras operating over
5G/6G networks and applies AI/ML models for face detection,
anomaly recognition, and loitering monitoring—extending
beyond conventional video recording capabilities.

Leveraging 5G/6G connectivity and MEC-based compu-
tation, the proposed system enables the transmission of
high-quality video streams with minimal latency, making it
particularly suitable for large-scale or remote surveillance
environments. By deploying AI/ML processing units at the
network edge, detection models are executed locally, sig-
nificantly reducing network traffic and improving real-time
responsiveness. The system’s modular design allows operators
to selectively activate functionalities such as face recognition,
restricted zone monitoring, and behavioral analysis based on
specific application requirements.

The key contributions and features of the proposed system
are summarized as follows:

• Real-time Face Recognition: Design and implementation
of a robust, modular architecture capable of accurately
identifying authorized personnel and distinguishing un-
known individuals under diverse environmental condi-
tions.

• Zone-based Intrusion Detection: Development of a flexi-
ble intrusion detection framework that supports dynamic
definition of restricted areas through polygonal zone
annotation, ensuring reliable detection of unauthorized
access.

• Behavior and Loitering Analysis: Integration of advanced
human-pose estimation methods—specifically leveraging
YOLOv8-Pose—to effectively detect and analyze loiter-
ing and other suspicious behaviors.

• Edge-based Inference: Deployment of AI/ML models
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on MEC nodes to perform on-site inference, thereby
reducing communication overhead, improving system re-
sponsiveness, and supporting real-time decision-making.

• Experimental Evaluation: Implementation and validation
on a 5G testbed to assess system feasibility in terms
of responsiveness, latency, and detection accuracy of the
proposed AI/ML techniques.

The remainder of this paper is organized as follows: Sec-
tion II presents the underlying framework and algorithms
employed in the surveillance system. Section III describes the
experimental setup on the 5G testbed. Section IV reports the
experimental results. Section V discusses the key challenges
and limitations encountered, and Section VI concludes the
paper.

II. PROPOSED SYSTEM: FACE RECOGNITION, INTRUSION
DETECTION, AND LOITERING MONITORING

Figure 1 illustrates the architectural components of the
proposed smart surveillance system. The SP/IP camera cap-
tures real-time video streams and transmits them to the MEC
server via a 5G/6G communication network. At the MEC, two
AI/ML models – InsightFace [13] and YOLOv8-Pose [14]
– are deployed for intelligent video analytics. Specifically,
InsightFace is employed for face recognition and feature
embedding extraction, while YOLOv8-Pose is utilized for
human pose estimation and loitering behavior analysis.

These models were selected based on the following con-
siderations:

• High accuracy and efficiency: InsightFace delivers
state-of-the-art recognition accuracy even under limited
computational resources, ensuring robust performance
across diverse environmental conditions.

• Lightweight yet effective design: YOLOv8n-Pose pos-
sesses a compact architecture (6.2 million parameters)
while maintaining sufficient precision for real-time be-
havioral analysis.

• Real-time inference capability: Both models can achieve
real-time performance (with 25 FPS) when deployed on
GPUs or edge AI platforms such as the NVIDIA Jetson
Xavier NX.

A detailed discussion of these models and their integration
into the proposed system is provided in the subsequent
sections.

A. Face Recognition using InsightFace
InsightFace provides high-performance face analysis,

including recognition, alignment, detection, and feature ex-
traction [13]. For precise face recognition, we utilize three
core components within InsightFace:

• SCRFD: A lightweight yet accurate face detector that
outputs bounding box coordinates for each detected face.

• Landmark Regression: Predicts key facial landmarks
(eyes, nose, and mouth) to enable precise alignment.

• ArcFace (ResNet100): Produces a 512-dimensional
embedding that uniquely represents each face. These

SP/IP Camera Frame Capture

InsightFace (buffalo l)

Polygon Zone Filtering

UI Dashboard

Event Trigger

YOLOv8-Pose

UI Dashboard

Fig. 1: Proposed pipeline integrating InsightFace for recogni-
tion and YOLOv8-Pose for loitering detection.

RTSP Camera / Video Frame Input

SCRFD Detector → Bounding Boxes

Landmark Regression → Key Points

Face Alignment → Standard Frontal View

ArcFace Embedding Extraction → 512-D Vector

Cosine Similarity Matching with Database

Known Identity or Intruder Classification

Fig. 2: Workflow of the InsightFace-based recognition
system

embeddings are compared with entries in the known-
person database using cosine similarity:

similarity(A,B) =
A ·B

∥A∥×∥B∥
.

A match is accepted if the similarity exceeds a predefined
threshold (typically 0.6–0.8). Faces that do not meet this
criterion are classified as unknown.

The integration of these modules enables real-time operation
while maintaining robustness against variations in lighting,
occlusion, and head pose. Figure 2 illustrates the flowchart of
face detection using InsightFace.

B. Loitering Detection using YOLOv8-Pose

In the proposed system, YOLOv8-Pose is employed for
loitering detection. Unlike conventional object detectors that



simply localize people with bounding boxes, YOLOv8-Pose
identifies key body points, effectively constructing a skeletal
representation. This allows the system to track individuals
accurately, even if the camera or the person moves.

Loitering is detected by monitoring the movement of these
keypoints over time. If a person remains within a defined
area beyond a preset duration, the system flags it as loitering.
This approach reduces false alarms and ensures consistent
tracking of the same individual, enhancing system reliability.
Figure 3 presents the flowchart for loitering detection using
YOLOv8-Pose.

Input Image / Frame

Backbone (CSPDarknet) → Extract Features

Neck (PAN/FPN) → Combine Features

Detection Head → Get Bounding Box + Keypoints

Detect Person with Skeleton

Analyze Behavior (Mark Loitering if > 5 seconds)

Fig. 3: Workflow from input image to behavior analysis using
YOLOv8-Pose

C. System Toggles

The system supports configurable toggles via a custom
script, including:

• zone_logic_enabled: Enables or disables polygon-
based zone monitoring.

• intrusion_logic_enabled: Enables or disables
marking intrusions in zones.

• loitering_enabled: Toggles the loitering detection
module.

• skeleton_view_enabled: Displays keypoint skele-
tons in the heatmap stream.

• image_saving_enabled: Controls saving of
cropped face images.

D. Stream Handling

• Both face recognition and pose/heatmap modules utilize
the same RTSP video stream.

• The heatmap stream displays pose skeletons and loitering
labels.

• The primary face stream displays bounding boxes,
names, and intrusion zones.

III. EXPERIMENTAL SETUP

We evaluate the performance of the proposed system using
a 5G testbed at the Indian Institute of Technology Jammu,
India. Figure 4 illustrates the testbed setup, which includes
5G/6G cameras, a gNB base station, the MEC server, and
the 5G core network. Both InsightFace and YOLOv8-Pose
models are deployed at the MEC to meet the stringent
latency requirements of the surveillance application. The
implementation leverages several libraries, including OpenCV,
Flask, Ultralytics, Pandas, and NumPy, to support model
execution and system integration.

gNB
5G Core

MEC node

Cloud node

L2/L3 networking

5GHz

Camera

Fig. 4: 5G testbed with smart surveillance camera connected
to base-station

IV. PERFORMANCE EVALUATION

Since this work focuses on real-time surveillance using live
RTSP video streams, no standard datasets were employed.
Instead, the system was tested on live feeds from 5G-enabled
IP cameras placed in controlled environments simulating
both restricted zones and public areas. The test scenarios
included authorized personnel, unknown visitors, and staged
intrusion attempts. Various lighting conditions and movement
patterns were recorded to evaluate system responsiveness and
accuracy. Figure 5 illustrates an example where an authorized
person and an intruder are detected within the same frame,
while Figure 6 shows a heatmap view highlighting normal
and loitering behavior.

Fig. 5: Both the known person and intruder in the same frame
are marked separately



(a) Skeleton view without loitering alert

(b) Skeleton view with loitering alert

Fig. 6: Comparison of body heatmap view in normal state and
during loitering detection

A. Detection Accuracy

Detection accuracy reflects the system’s ability to correctly
identify registered individuals in camera frames and is in-
fluenced by factors such as pose, lighting, occlusion, and
crowd density. Table I summarizes the number of frames
tested along with true positives (TP), false positives (FP),
false negatives (FN), and the corresponding percentages for
accuracy, precision, and recall. Detection errors primarily
occurred when faces were non-frontal or partially occluded,
occasionally leading to misclassification of known individuals
as intruders.

TABLE I: Comparison of detection performance in single-
person and multi-person scenarios

Metric Single-Person
Scenario

Multi-Person
Scenario

Frames Tested 300 300
True Positives (TP) 284 287
False Positives (FP) 73 81
False Negatives (FN) 37 234
Accuracy (%) 72.08 47.67
Precision (%) 79.55 77.99
Recall (%) 88.47 55.09

Single-Person Performance: In scenarios with only one
individual, the system achieved an accuracy of 72.08% with
a high recall of 88.47%, indicating that most frames correctly
detected the person. False positives were rare and mostly re-
sulted from misclassification or threshold mismatches. These
results demonstrate that system reliability is highest when a
single person is present, particularly if the face is frontal and
well-lit.

Multi-Person Performance: Accuracy dropped to 47.67%,
with recall decreasing to 55.09% in multi-person scenarios.
This reduction was mainly due to partial occlusion, non-
frontal face poses, or individuals turning away from the
camera, causing frequent misclassification as “intruders.” The
results indicate that recognition accuracy is significantly af-
fected by pose variation, occlusion, and overlapping bound-
ing boxes. Potential improvements include using pose-robust
models, multi-face tracking, and optimized similarity thresh-
olds.

Precision Stability: Precision remained relatively stable
across both single- and multi-person scenarios (approximately
78–80%), indicating that when the system identified a face as
a registered individual, it was usually correct. However, recall
suffered considerably in crowded scenarios due to missed
detections.

B. Detection Time

As discussed in Section I, latency is a critical QoS require-
ment for real-time applications. To evaluate this, we measured
the detection time, which includes the total processing of
frames at the MEC. Processing time is defined as the duration
from reading a frame from the camera to completing all
operations, including detection, labeling, and image saving.
Table II summarizes the processing times in milliseconds,
with the effective FPS representing the average number of
frames processed per second for detection.

TABLE II: Processing time at the MEC in milliseconds

Mean Median Min Max Effective FPS
218.29 285.23 39.91 344.49 4.58

Table III isolates the time spent solely on detection, ex-
cluding the frame acquisition and preprocessing steps. Results
indicate that detection accounts for the majority of processing
time, averaging approximately 155 ms per detection. Scene
complexity significantly affects latency, as processing time
grows with the number of detected objects and frame res-
olution. Consequently, system tuning must carefully balance
detection accuracy, processing latency, and real-time respon-
siveness according to deployment requirements.

We also evaluated the effect of input downscaling on
latency. Table IV presents network and inference latency for
various downscale factors. At a factor of 0.5, network and
resizing overheads remain minimal, providing an efficient
configuration while maintaining acceptable detection relia-
bility. At a factor of 0.75, detection accuracy remains high,



TABLE III: Detection time in milliseconds

Mean Min Max
155.45 39.64 237.70

TABLE IV: Comparison of latency metrics across different
downscale factors.

Down-
scale
Factor

Frames Average
FPS

Average
Network
Latency

Average In-
ference La-
tency

0.5 300 3 - 4 4 - 5 ms 222.12 ms
0.75 300 2 - 3 11 - 12 ms 244.6 ms
1.0 300 4 - 5 3 - 4 ms 194.2 ms

but the system experiences slower real-time response due to
increased computational overhead. Processing at the original
resolution achieves the highest throughput (4–5 FPS) with
minimal network latency (3–4 ms) and reduced inference
latency (194.2 ms), benefiting from more efficient GPU
utilization. However, higher-resolution frames increase the
likelihood of false positives, reducing overall precision. These
observations highlight the trade-offs between speed, accuracy,
and detection reliability.

C. Key Insights

From the analysis, three key trends emerge:
• Resolution vs. Latency: Full-resolution frames reduce

inference latency but increase false positives, while ag-
gressive downscaling improves robustness at the cost of
slower processing.

• Optimal Trade-off: A downscale factor of 0.5 provides a
balanced configuration, offering reliable detection while
maintaining near real-time performance.

• Scene Dependence: System latency is affected by scene
complexity, with higher resolution and a greater number
of detected objects leading to increased processing times.

D. Alert Latency on Intrusion Detection

Unlike detection and inference, which consistently operate
within the 200–300 ms range, the end-to-end alert latency
exhibits greater variability. This latency measures the time
elapsed from intruder detection to the delivery of an alert
to the user via Telegram. Empirical measurements show an
average latency of 4.2 seconds, ranging from 3 to 5 seconds.
As shown in Figure 7, the alert latency for each component
is as follows:

• MEC Processing (≈ 250 ms): Local face detection,
cropping, and metadata preparation.

• Network Transmission (≈ 200 ms): Time spent on
outbound HTTP requests and responses.

• Telegram Backend (≈ 2.5−4.5 s): Server-side process-
ing and push notification delivery.

E. System Resource Monitoring

To evaluate the real-time performance of the proposed
surveillance system, MEC (Multi-access Edge Computing)

resource monitoring was conducted during operation. Figure 8
presents CPU and RAM utilization, FPS with detection la-
tency, and alert latency over time. The results indicate that
CPU usage remains relatively high, between 70–80%, with
occasional dips corresponding to lighter workloads or frames
containing fewer objects. In contrast, RAM usage remains
stable at approximately 28–30%, suggesting that memory is
not a limiting factor. FPS fluctuates between 10–13, directly
influencing inference latency, which varies from 80–200 ms
depending on frame complexity. Alert latency is observed in
the range of 2.9–3.5 seconds, consistent with earlier findings
that the primary source of delay is external communication
with the Telegram API rather than local processing.

V. LIMITATIONS AND CHALLENGES

While the proposed surveillance system demonstrates
promising results in integrating face recognition, intrusion
detection, and loitering monitoring, several limitations were
identified during experimentation. These challenges under-
score areas that require further refinement for deployment in
real-world, large-scale environments.

A. Model Misclassification Issues

A key challenge is the occasional misclassification of indi-
viduals. These errors primarily result from similarities in fa-
cial features, limited training data, and suboptimal recognition
thresholds. Misclassifications can reduce system reliability
and trigger unnecessary alerts, potentially undermining trust
in automated surveillance.

B. Effect of Lighting, Occlusion, and Camera Angle

The accuracy of both face recognition and pose-based
loitering detection is highly sensitive to environmental condi-
tions. Poor lighting, strong shadows, or glare can compromise
detection reliability. Partial occlusions—such as masks, hats,
or objects obstructing the person—further degrade recognition
performance. Additionally, camera placement and viewing
angle significantly influence detection accuracy, as extreme
angles can distort facial features and pose keypoints, increas-
ing false positives or missed detections.

C. Zone Drawing and Resolution Mismatch

A practical limitation was observed during polygonal zone
definition for intrusion detection. The RTSP stream is captured
at high resolution, making interactive zone drawing challeng-
ing. To simplify this process, snapshots were downscaled
during zone definition. However, this led to a mismatch: the
coordinates drawn on the downscaled snapshot did not ac-
curately align with the original high-resolution video stream,
resulting in imprecise intrusion detection boundaries.

VI. CONCLUSION

This work demonstrates the feasibility of a real-time smart
surveillance system integrating face recognition, intrusion
detection, and loitering monitoring. Deep learning models
automatically identify individuals, detect unauthorized entry,
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Fig. 7: Timeline of alert latency showing variability between 3–5 seconds.

Fig. 8: MEC Resource Monitoring showing CPU/RAM utilization, FPS with detection latency, and alert latency in real time.

and flag unusual behaviors such as prolonged presence in
restricted areas. The system is designed for flexibility, allow-
ing users to enable or disable features like zone monitoring,
loitering detection, or intrusion alerts via a Flask dashboard,
making it adaptable to diverse security requirements.

Testing showed that detection and recognition occur within
200–300 ms, while end-to-end alert delivery takes 3–5 sec-
onds due to network and Telegram server delays. Although
the current results sufficient for most security applications,
we plan to include faster hardware (such as GPU support)
and optimized alert decisions to further improve the respon-
siveness of the detection in real-time. We also plan to include
different complex scenarios, such as low-light and occlusion,
while integrating federated learning to improve the scalability
and preserve user-privacy.
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