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Abstract—Digital twin (DT) systems have gained significant
traction in edge computing environments, where maintaining
real-time synchronization between physical and virtual enti-
ties is crucial. Age of Information (AoI) has emerged as a key
metric for capturing the freshness of data in such systems.
This paper studies the service placement and request routing
problem in a digital twin network, where availability and AoI
are the primary aspects taken into consideration. The studied
problem consists of two phases – master node selection and
resource allocation. In the first phase, we formulate an ILP
to select master nodes equipped with higher resources for a
given edge-enabled digital twin networks. In the second phase,
we formulate a multi-constrained optimization problem for
service placement and request routing in the digital twin
network. We propose a self-tuned greedy approach to solve
the formulated NP-hard optimization problem in polynomial
time. Simulation results show that the proposed approach
yields competitive performance compared to the optimal
solution. Furthermore, the results demonstrate the system’s
efficiency and resource utilization compared to the existing
approaches.

Index Terms—Edge network, Digital twin, Resource allo-
cation, Optimization

I. INTRODUCTION

The advent of Industry 4.0 and the proliferation of
Internet of Things (IoT) technologies have significantly
increased the demand for real-time, intelligent, and scalable
systems. Digital Twin (DT), which creates virtual replicas
of physical entities, has emerged as a key enabler for
such systems, offering real-time monitoring, simulation,
and control capabilities [1]. The effectiveness of a digital
twin heavily depends on low-latency communication, high
service availability, and efficient computation—particularly
when deployed in dynamic and large-scale networks. Edge
computing has gained traction as a viable solution to
meet the stringent latency requirements of digital twin
systems by pushing computation and data storage closer
to the data sources [2]. However, the resource-constrained
nature of edge network poses significant challenges in
meeting availability requirements of digital twin applica-
tions. Therefore, the highly distributed and heterogeneous
nature of edge networks presents significant challenges for

service placement and request routing, especially when
age-of-information (AoI) and availability are essential, to
ensure contextual relevance and minimize communication
overhead.

In this paper, we study the problem of AoI and
availability-aware service placement and request routing
in edge networks for digital twin applications. We model
the network as a graph of compute nodes with varying
capacities and availability levels, and propose a two-step
approach: (i) selection of master nodes based on reach-
ability and hop count, and (ii) optimization of request
allocation with respect to delay, resource availability, and
utility. To address the inherent complexity of the joint
placement and routing problem, we present a greedy al-
gorithm that prioritizes service requests based on a utility-
to-cost ratio, considering availability, delay tolerance, and
resource requirements. Our solution aims to maximize the
overall utility of the system while satisfying all network
constraints. The key contributions of this paper are as
follows:

• The edge-enabled digital twin network is equipped
with two types of nodes – master node and worker
node. The master nodes in the network are equipped
with higher resources and have higher availability
compared to the worker nodes to which the requests
are associated with. Therefore, we propose a hop-
based integer linear programming (ILP) problem to
identify a minimal set of master nodes for central-
ized processing in the edge network to minimize the
CAPEX for network deployments.

• We formulate the problem of AoI and availability-
aware service placement and request routing for digi-
tal twin applications in edge networks as a constrained
optimization problem.

• We propose a self-tuned utility-aware greedy algo-
rithm that efficiently allocates requests to compute
nodes while meeting service availability, delay, and
resource constraints. Simulation results show that the
proposed greedy approach yields competitive perfor-
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mance to the optimal solution and outperforms the
existing approaches.

The remainder of this paper is organized as follows.
Section II discusses the related work. Section III presents
the network model and problem statement for master node
selection. Section IV presents the delay and availability
model, followed by the problem statement for service
placement and request routing in digital twin network.
Section V outlines our proposed solution approach. Sec-
tion VI presents the simulation results. Finally, Section VII
concludes the paper with some future research directions.

II. RELATED WORK

Age of Information (AoI) has become a key metric for
evaluating information freshness in edge-enabled digital
twin (DT) systems. Recent work has integrated AoI into
service provisioning and inference optimization frame-
works [1], [3]–[9]. We discuss some of the existing works
as follows.

Li et al. [6] introduced an AoI-based resource alloca-
tion framework using digital twin network slicing. Their
method improves data freshness through dynamic service
placement while accounting for latency and system hetero-
geneity. Similarly, Zhang et al. [1] focused on optimizing
inference tasks under AoI constraints. The authors pro-
posed a joint model for service slicing and request routing,
achieving lower AoI and higher inference accuracy across
distributed edge nodes.

Farhadi et al. [3] proposed approaches for efficient
service placement and request scheduling in edge clouds,
addressing resource constraints and dynamic demands. The
authors proposed a two-time-scale framework that jointly
optimizes service placement and request scheduling. Wang
et al. [7] proposed an edge-assisted DT to monitor physical
objects and environments to determine optimal strategy
that can be applied in real-time for different deployment
scenarios.

While these studies provide effective AoI-aware strate-
gies, several challenges remain unaddressed as follows:
a) limited focus on availability essential for real-world
applications; and b) absence of AoI-sensitive frameworks
tailored for DT systems. This paper addresses these gaps
by proposing an edge-enabled digital twin network that
considers AoI minimization, resource constraints, and sys-
tem availability, enabling more reliable and efficient digital
twin services at the edge.

III. PHASE I: MASTER NODE SELECTION

Let there be an edge network G(N,E), where N is the
set of nodes and E is the set of edges (links). Each node
n ∈ N has certain CPU and RAM resources available to
host a digital twin, denoted by Cn and Dn, respectively.
Each link (i, j) ∈ E is assigned delay denoted by λi,j . Due
to the softwarized placement of services on the nodes [10],
each node n ∈ N is also associated with an availability

denoted by an. Considering the edge networks, all nodes
cannot be equipped with high resources and availability like
a centralized cloud server. Therefore, we select a subset of
nodes, called master nodes, with higher resources and
availability in edge network itself, compared to all other
nodes, called worker nodes. The set of master nodes and
worker nodes is denoted as M and W , where N = M∪W .
We consider the hop count and in-degree (reachability) of
each node to select the minimum number of master nodes.
We define the cost function for each node i ∈ N as:

ci =
1

deg(i) + 1
, ∀i ∈ N, (1)

where deg(i) is the in-degree of a node i ∈ N . We note that
a node with higher in-degree provides higher reachability
from other nodes, and thereby reduces the cost if the node
is selected as a master node. Furthermore, the denominator
in (1) ensures the working of the cost function in presence
of a node with zero in-degree.

The objective is to minimize the number of master nodes
while considering the associated constraints. Mathemati-
cally,

min

|N |∑
j=1

wjcj , (2)

subject to ∑
j

βh
i,j ≥ 1, ∀i ∈ N, i ̸= j,

βh
i,j ≤ wj , ∀i, j ∈ N,

wj ∈ {0, 1}, ∀j ∈ N,

(3a)

(3b)

(3c)

where wj indicates whether the j-th node is selected as
a master node (binary variable) denoted in (3c). Equa-
tion (3a) ensures that for each node i, there exists at
least one master node j within the desired hop count h.
Equation (3b) presents the relationship between hop count
and number of master node selection, where βh

i,j is defined
as:

βh
i,j =


1, if a master node is reachable

from node j within hop count h
0, otherwise.

(4)

Figure 1 shows a schematic diagram of a digital twin
with worker and master nodes, where the shaded nodes
are master nodes. Both the master and worker nodes are
equipped with compute and storage resources.

IV. PHASE II: SERVICE PLACEMENT AND REQUEST
ROUTING

For the given network with master and worker nodes,
we focus on the service placement and request routing for
incoming service requests denoted by a set R. Each request
r ∈ R has specific CPU and RAM resource requirements,
denoted by cr and dr, respectively. Furthermore, each
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Fig. 1: A digital twin network with master and worker
nodes with different services hosted by the nodes

request has a threshold ar for service availability and
is associated with a worker node denoted by wr ∈ W .
Each request r ∈ R is also associated with a utility
Ur, which is obtained by serving the request, and a task
size sr. We consider a generalized utility associated with
a request. However, the utility of can be modeled as a
function of CPU, RAM, and other networking resources
required by the request. To provide the services to the
requests, associated service functions need to be placed
either at the worker node and/or at the master nodes.
Furthermore, request routing needs to happen through the
service functions. We discuss the availability and delay
models in subsequent sections.

A. Availability Model

A service hosted by a master/worker node is available
when both the node and the hosted service are available.
A failure of the service can happen at a node due to the
hardware failure of the node itself and/or the software
failure of the hosted service [10]. Therefore, availability
is an important aspect in serving the requests in a digital
twin network. We consider that the worker nodes have
a lower availability compared to the master node, as the
former is placed with limited hardware resources and
directly accessible to the users. Moreover, we consider the
same availability for all worker nodes unlike master nodes,
which are having different availability due to heterogeneous
computing and hardware resources. The availability of a
node is denoted as an, ∀n ∈ N .

B. Delay Model

The total delay associated with task computation in-
cludes the delays from local computation on a worker and
offloading to a master node:

∆ =

{
∆loc

proc, if locally computed,
∆trans +∆prop +∆que +∆mast

proc , otherwise.

∆trans, ∆prop, and ∆que represent the transmission, propa-
gation, and queuing delays, respectively. ∆loc

proc and ∆mast
proc

denote the processing delays at the worker node and master
node, respectively. We present the modeling of these delays
as follows:

1) Processing Delay: The processing delay of request
r served by node n is presented as follows:

∆proc,n,r =
sr
cj

,∀n ∈ N, ∀r ∈ R, (5)

where sr denotes the data size of the request r, and cn
denotes the computational capacity of the node n ∈ N .

2) Transmission Delay: The transmission delay of re-
quest r depends on the data-size and the channel capacity.
Mathematically,

∆trans,r =
sr

B log2(1 + σ)
,∀r ∈ R, (6)

where B is the bandwidth of the channel. The symbol
σ denotes the signal-to-noise ratio, where the channel is
modeled with AWGN channel.

3) Propagation Delay: The propagation delay of request
r is modeled as:

∆prop,r =
∑

(i,j)∈E

λi,jy
r
i,j ,∀(i, j) ∈ E,∀r ∈ R, (7)

where λi,j denotes the propagation delay of link (i, j). The
binary variable yri,j denotes whether the link (i, j) is used
to route the offloaded request r to the master nodes.

4) Queuing Delay: The queuing delay of request r
depends on the execution and arrival rates at the associated
master mode. Mathematically,

∆que,j,r =
1

ϵj − ζj
,∀j ∈M,∀r ∈ R, (8)

where ϵj denotes the task execution rate at the master
node j ∈ M . The symbol ζj denotes the average request
allocation rate at the master node j ∈ M . We note that
the queuing delay is not applicable when the request is
processed at the worker node itself. This is because a
single task is generated and received by the worker node
at a time. Therefore, total delay experienced by request
r is calculated as: ∆n,r = ∆trans,r + ∆prop,r + ∆que,j,r +
∆proc,n,r,∀r ∈ R,∀n ∈ N, ∀j ∈M .

C. Problem Statement

The objective is to maximize the total utility by serving
the requests while considering the associated constraints.
Mathematically, we formulate the optimization problem as
follows:

max
∑
r∈R

∑
n∈N

Urxr,n, (9)



subject to

arxr,n ≤ an, ∀r ∈ R,∀n ∈ N,∑
r∈R

crxr,n ≤ Cn, ∀n ∈ N,∑
r∈R

drxr,n ≤ Dn, ∀n ∈ N,∑
n∈N

xr,n ≤ 1, ∀r ∈ R,

∆n,rxr,n ≤ ∆r, ∀r ∈ R,∀n ∈ N,

xr,n = 0, ∀n ∈W \ {wr},
xr,n ∈ {0, 1}, ∀r ∈ R,∀n ∈ N,

yri,j ∈ {0, 1}, ∀r ∈ R,∀(i, j) ∈ E,

∑
(i,j)∈E

yri,j −
∑

(j,i)∈E

yrj,i =


xr,n, if i = wr,

−xr,n, if i = n,

0, otherwise.

(10a)

(10b)

(10c)

(10d)

(10e)
(10f)
(10g)
(10h)

(10i)

Equation (9) represents the objective, which is to maximize
the total utility. Equation (10a) denotes the availability
constraint, where the availability requirement of a request
r ∈ R should be fulfilled by the compute node n ∈ N .
The compute and storage constraints are captured in (10b)
and (10c), respectively. Equation (10d) denotes that the
request r is served by at most one node, either worker
node or a master node. The constraint on delay requirement
is captured in (10e). A request cannot be served by a
worker node except the one associated with the request,
as presented in (10f). In the optimization problem, two
types of binary decision variables are present – xr,n for
request admission and yri,j for request routing. xr,n is
equal to 1 if request r is served by node n, else 0, and
it is presented in (10g). Similarly, yri,j is equal to 1 if
request r is routed through link (i, j) ∈ E, and it is
presented in (10h). Finally, Equation (10i) considers the
flow conservation rule associated with request routing. The
formulated optimization problem is NP-hard.

V. SOLUTION APPROACH

To solve the optimization problem in (9) in polynomial
time, we propose a utility-to-cost ratio-based greedy ap-
proach for serving incoming requests.

A. Maximum Utility-to-Cost Ratio First

This approach prioritizes requests based on utility-to-
cost ratio, where we design the following cost function:

Φr = αar + β cot−1

(
∆max −∆r

∆max

)
+ γ

dr
dmax

+ δ
cr
cmax

,

where α, β, γ, and δ are the predefined constants tuned
for a given network deployment and request distribution,
which is discussed in the subsequent section. ∆max, dmax,
and cmax denote the maximum delay, storage and compute
requirements among all the requests.

Algorithm 1 Proposed utility-based greedy algorithm
Inputs: Set of worker nodes: W

Set of master nodes: M
Set of all nodes: N , each node n ∈ N with an, Cn,
and Dn;
Set of Requests: R, each request r ∈ R with ar, cr,
dr, Ur, sr, and associated worker node wr;

Output: Binary allocation of requests to worker and mas-
ter nodes

1: R̂ ← Sort requests in descending order of Ur

Φr
,∀r ∈ R

2: for each request r ∈ R̂ do
3: for each node n ∈ {wr ∪M} do
4: flag ← CHECK FEASIBILITY(r, n)
5: if flag then
6: xr,n = 1
7: else
8: xr,n = 0

9: function CHECK FEASIBILITY(r, n)
10: Check availability: ar ≤ an
11: Check compute:

∑
r∈R cr ≤ Cn

12: Check storage:
∑

r∈R dr ≤ Dn

13: Check delay: ∆n ≤ ∆r

14: if All constraints satisfied then
15: return TRUE
16: else
17: return FALSE

The time complexity of the proposed approach is
O(|R|log|R|+|R||N |), where |R| be the number of re-
quests and |N | be the number of nodes. Where the first
part O(|R|log|R|) is due to the sorting the requests, and
the second part O(|R||N |) is for serving the requests.

B. Tuning the Predefined Constants

We use the Bayesian optimization approach [11] and
utilize the Gaussian process (GP) upper confidence bound
(UCB) to tune the constants. The GP is used to construct a
posterior of the objective function and UCB is used as the
acquisition function. Mathematically, the acquisition func-
tion of the proposed greedy approach is denoted by [12]:
UCB (x) = µ (x) + κι (x), where x is a vector with 4
dimensions, each representing one constant. µ (x) denotes
the posterior mean and ι (x) denotes the variance at x, and
κ is a system parameter that controls the importance of ex-
ploration over exploitation. In each iteration, the Bayesian
optimization approach finds out the x for which UCB (x)
is maximized. It then determines where to sample next
from the 4-dimensional search-space [0, 1]

4. We note that
methods such as gradient-decent cannot be used because
we do not have a closed-form expression of the objective
function that can be used to maximize the total reward.

We use RayTune [13] to frame this tuning problem. In
RayTune, we set the number of samples to explore as 50



and the number of trials as 40. For each trial, we generate a
total of 50 service requests. The constants are tuned given
the network topology, networking resources, and request-
specific requirements, which are reported in Sec. VI. We
choose the sample that yields the maximum mean utility
over all the trials.

VI. PERFORMANCE EVALUATION

We simulate the digital twin in a softwarized platform
with the parameters presented in Table I.

TABLE I: Simulation parameters

Parameter Value
Network topology AttMpls [14]
Total number of nodes 25
Hop-count threshold 3
Compute resource of master nodes [500, 1000]
Storage resource of master nodes [500, 1000]
Compute resource of worker nodes [200, 400]
Storage resource of worker nodes [200, 500]
Availability of master nodes [0.9, 1.0]
Availability of worker nodes 0.8
Propagation delay of a link [0.05, 0.2]
Request arrival distribution Poisson process
Compute requirement of requests [60, 150]
Storage requirement of requests [150, 450]
Availability requirement of requests [0.75, 0.99]
Delay requirement of requests [3, 10]
Utility of requests [5, 10]
Self-tuned [α, β] [0.375, 0.951]
Self-tuned [γ, δ] [0.599, 0.732]

We compare the proposed greedy approach with optimal
solution, where we solve the optimization problem using
IBM CPLEX to get the optimal solution. We use the tuned
value of the predefined constants to calculate the utility-
to-cost ratio of a request. Furthermore, we consider two
other greedy approaches – without considering availability
requirements, such as in [7], called U-WoAVL and random
allocation, called U-Random. In U-WoAVL, the requests are
allocated based on their utilities similar to the proposed
approach while considering the associated constraints ex-
cept the availability. Whereas requests are allocated in
random order in case of U-Random considering the as-
sociated constraints and utilities.Henceforth, we represent
the optimal solution, proposed greedy approach, greedy
without availability, and greedy with random allocation by
ILP, Proposed, U-WoAVL, and U-Random, respectively. We
consider the following performance metrics – total utility,
percentage of admitted requests, percentage of resource
utilization, and computation time. The simulation results
are discussed in subsequent sections.

A. Results and Discussion
1) Total Utility: Figure 2 represents the total utility

achieved by each scheduling method as the number of re-
quests increases. ILP and Proposed methods achieve sig-
nificantly higher total utility than U-WoAVL and U-Random.
The Proposed method performs close to ILP while being
more computationally efficient. U-WoAVL and U-Random
yield lower utility, suggesting poor decision-making in
resource distribution. Specifically, U-WoAVL provides the
lowest utility when availability is not considered. Maximiz-
ing total utility indicates better service quality and effective
scheduling.
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Fig. 2: Total utility with different number of requests

2) Percentage of Admitted Requests: Figure 3 shows
the percentage of admitted requests compared to the to-
tal number of incoming requests. The Proposed method
outperforms U-WoAVL and U-Random in admitting a higher
percentage of requests. The ILP method has slightly better
or similar admission rates compared to the Proposed
method. U-WoAVL and U-Random methods admit fewer
requests. In U-WoAVL requests are virtually allocated the
resources, but may not be served physically due to the
availability requirements. On the other hand, U-Random
yields a low admission percentage due to inefficient al-
location strategies. A higher admission rate implies better
system efficiency and resource allocation.
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3) Resource Utilization: Figure 4(a) illustrates how
CPU usage (%) changes as the number of requests in-
creases. ILP has higher CPU utilization compared to the
Proposed method. The Proposed approach efficiently uti-
lizes CPU resources without excessive load. U-WoAVL and
U-Random have relatively lower CPU utilization, which
indicate sub-optimal resource allocation. The Proposed
method achieves a balance between performance and re-
source efficiency.

Figure 4(b) presents the percentage of RAM utilized for
different request loads. ILP and Proposed methods tend to
have higher RAM utilization than U-WoAVL and U-Random.
U-WoAVL and U-Random approaches utilize less RAM,
potentially indicating inefficient resource management. The
Proposed method manages RAM better compared to ILP
while still maintaining high efficiency. Proper memory
utilization ensures that more requests can be processed
efficiently.
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Fig. 4: Percentage of CPU and RAM utilization

4) Computation Time: Figure 5 shows the computa-
tion time required for different scheduling algorithms as
the number of requests increases. The ILP method takes
the most time, likely due to its optimization complex-
ity. The Proposed method achieves lower computation
time than ILP, indicating better efficiency. U-WoAVL and
U-Random methods have significantly lower computation

times but may lack optimal resource allocation. The Pro-
posed method balances efficiency and computational cost.
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VII. CONCLUSION

This paper introduces a comprehensive framework for
Age of Information (AoI) and availability-aware service
provisioning and inference in edge-enabled Digital Twin
(DT) systems. Unlike conventional approaches that focus
solely on minimizing AoI, the proposed model incorporates
additional critical factors such as quality-of-services, node
availability, and resource constraints. This holistic design
enables a more realistic and effective solution for deploying
DT applications in heterogeneous and dynamic edge envi-
ronments. The framework employs a two-phase optimiza-
tion strategy: First, it selects a minimal set of master nodes
using hop-based heuristics to ensure efficient coverage and
centralized coordination; Second, it utilizes a utility-aware
greedy algorithm to allocate service requests by maxi-
mizing the utility-to-cost ratio. This approach takes into
account various delay components—computation, trans-
mission, propagation, and queuing—offering an accurate
representation of system latency. Experimental results con-
firm the superiority of the proposed method across sev-
eral performance metrics. It consistently achieves higher
total utility, near-optimal solutions, and demonstrates bet-
ter request admission rates, reflecting enhanced system
throughput. Moreover, it shows improved CPU and RAM
utilization, highlighting effective resource management,
while maintaining lower computation time, underscoring its
practical viability and scalability in real-world applications.
The future extension of this work includes the use of deep
learning approaches for service placement in digital twin.
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