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Abstract—In this paper, we propose a dynamic demand schedul-
ing (D2S) scheme — an effort towards cost-effective energy
consumption at customers’ end. The theory of Optimal Portfolio
Selection is adopted to generate customers’ expected day-ahead
energy demand graph called the weight graph, based on past days’
history — energy demand, profit return, and corresponding risk.
In such a scenario, the weight graph of energy ensures that the
expected profit return and the corresponding risk to the customers
are optimized. Consequently, we evaluate the dynamic scheduling
scheme for optimizing the energy cost to the customers using the
weight graph. Furthermore, the proposed scheme also assists in
relieving the peak-demand on the grid, which, in turn, implies
that the grid is capable of providing service to the scheduled
appliances. The performance of the proposed scheme is evaluated
with different performance metrics — peak-demand, demand
variation, energy-cost, and utility of the customers. Simulation
results show that the proposed dynamic scheduling scheme, D2S,
yields improved performance than that with the existing ones — no
scheduling and static scheduling. It also shows that the utility of
the customers increases approximately 28.2% over the existing
ones.

Index Terms—Portfolio, Energy Management Unit (EMU), Dy-
namic Scheduling, Optimization, Smart Grid

NOMENCLATURE

Pexp
d Expected profit return of a day
Rexp

d Expected risk of a day
X exp

t Expected energy demand in the tth time-slot
Xt Actual demand in the tth time-slot
Kt Set of appliances served in the tth time-slot
Lt Set of appliances requested in the tth time-slot
Mt Set of appliances requested and served in the

tth time-slot
Nt Set of appliances deferred from previous periods

but served in the tth time-slot
Pexp
t Expected profit return in the tth time-slot
Rexp

t Risk in the tth time-slot
Eexp

rem Remaining required energy
P rtp
t Real-time profit return in the tth time-slot
Rrtp

t Risk with real time price in the tth time-slot

I. INTRODUCTION

A smart grid is envisioned to support cost-effective energy
management with the help of bi-directional communication and
electricity flows. To support cost-effective energy management,
different technologies such as demand response, dynamic pric-
ing, and demand scheduling are presented in the literature [1],
[2]. In a smart grid, the customers play an important role
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in minimizing their energy consumption cost with different
strategies such as energy consumption scheduling and presence
of storage devices [3]. Appliance scheduling is one of the
promising smart grid technological approaches which has the
potential to minimize peak-to-average ratio of demand to the
grid, while concurrently minimizing the energy cost to the
customers [4], [5]. In such an approach, the appliances are
categorized into two types — shiftable, and non-shiftable.
Shiftable appliances such as washing machine and fridge can
be used in any time of the day. On the contrary, non-shiftable
appliances such as light and air-conditioner must be used in
real-time to meet the requirements. Therefore, in the peak hour,
the customers can schedule their shiftable appliances to relieve
the extra load from the grid, so as to minimize the energy
consumption cost. Consequently, with the implementation of
the scheduling scheme, a well-balanced energy management
scheme can be established in smart grid. However, an adequate
and adaptive scheduling process needs to be implemented in
order to achieve cost-effective energy management.

A. Motivation

Erol et al. [6] discussed a static scheduling scheme for
reducing the energy consumption cost to the customers. In such
a scheme, different time-slots have different associated pricing
tariffs (i.e., pre-defined static price). Using their scheme, the
entire demand of a customer may be shifted from one time-
slot to another, so as to minimize the load on the grid during
peak hours. Consequently, if most of the customers schedule
their appliances in the same time-slot (off-peak period), then
the corresponding time-slot may be changed to on-peak. Ac-
cordingly, the grid increases the real-time price of energy to
maintain the supply-demand curve, which, in turn, results in
cost-expensive energy consumption for the customers, rather
than a cost-effective one. Therefore, there is a need to deploy a
scheduling strategy, which can deal with the dynamic behavior
of energy requests from customers.

B. Contribution

In this paper, a dynamic appliance scheduling scheme, named
as D2S, is proposed in order to reduce the energy consumption
cost of the customers in the smart grid architecture. The theory
of Optimal Portfolio Strategy [7] is applied in order to calculate
the expected energy price to optimize the energy cost, while
considering the corresponding risk involved in it. Conversely,
customers’ day-ahead energy demand — weight graph — in
different time-slots is also evaluated. Accordingly, we present
a dynamic scheduling algorithm for energy consumption, which
conforms with the weight graph of energy. It may be clarified atAc
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this juncture that the concept of weight graph has been adopted
from the theory of Optimal Portfolio Strategy, on which the
proposed solution is based. We consider that the appliances are
flexible and non-flexible in nature, i.e., the flexible appliances
are shiftable, while the real-time price and the corresponding
risk are high. In summary, the contributions of this work are
as follows:
• We propose a dynamic appliance scheduling scheme for

cost-effective energy management in smart grid.
• The concept of weight graph of energy is introduced for

day-ahead energy consumption of a customer.
• The theory of Optimal Portfolio Strategy [7] is adopted

to evaluate the expected energy price in different time-
slots. With the integration of weight graph and optimal
portfolio strategy, we evaluate the expected energy demand
of the customer for which his/her expected profit return is
maximized, while the risk is minimized.

• Algorithms for weight graph evaluation and dynamic
scheduling are presented.

The rest of the paper is organized as follows. Section II
presents a brief overview of the current state-of-the-art for real-
time energy management in smart grid. The overview of the
system architecture is elaborated in Section III. Subsequently,
the optimal portfolio selection and corresponding algorithms are
presented in Section IV. Performance of the proposed scheme is
discussed in Section V. Finally, we summarize the contributions
of this work in Section VII, while throwing light on some future
research directions.

II. RELATED WORKS

In smart grid, several schemes are discussed in the literature
in the context of cost-effective and reliable energy management
[1], [3], [6], [8]–[15]. In a recent study [1], implementation
of energy consumption scheduling (ECS) devices in the smart
meter is studied in order to schedule home appliances auto-
matically. In such a setting, several buildings share a common
energy source. Similarly, Rad et al. [3] also proposed a demand
scheduling scheme to minimize energy consumption cost to
the customers. Briel et al. [4] proposed a distributed appliance
scheduling scheme, in which, the appliances are scheduled in
a randomized basis. A load controller schedules the appliances
according to their bounded running time (e.g., an appliance
must be used within 8 a.m. to 4 p.m.). In [5], demand schedul-
ing scheme is studied in the presence of time-shiftable loads.
In such a scheduling scheme, demand bidding to the day-ahead
and real-time markets is proposed in order to minimize energy
consumption cost. The author showed that the proposed scheme
is useful for different practical bidding scenarios. Static energy
scheduling scheme was advocated by Erol et al. to minimize
the energy consumption cost to the customers [6]. In such a
scheduling scheme, an energy scheduler checks all time-slots,
and accordingly, schedules the appliances for which the energy
consumption cost is minimized. A two stage demand response
scheduling scheme is proposed in [9]. In the first stage, a convex
optimization problem is formulated to minimize the utilities’
generation cost. On the other hand, Vickrey auctions strategy
is evaluated in different time periods to maximize social-welfare
of the customers, which is presented as stage two. In such a

strategy, the utility provider schedules the customers’ energy
requests as a maximization of social welfare. Koutsopoulos et
al. [10] proposed a centralized energy scheduling method, in
which the utility provider serves requested energy from the
customers up to a threshold value. Consequently, remaining
energy requests are queued, and serviced in the next time-slots.

Kim and Lavrova [11] proposed a demand response schedul-
ing scheme, which is based on the priority of individual loads.
Additionally, they considered the availability of local storage
of energy to the customers. However, the effect of real-time
pricing is not considered in the proposed scheme. Chen et al.
[12] proposed a scheme for household appliance scheduling
based on time-varying real-time price from the grid to minimize
energy consumption cost to the customers. The uncertainty
of appliances’ starting times and intermittent behaviors of
renewable energy sources are also considered. However, the
authors assumed that the real-time price is static, and all the
time-slots have pre-defined pricing tariff. Adika et al. [13]
proposed a multi-objective appliance scheduling algorithm in
the presence of renewable energy sources. The energy scheduler
installed at the customers’ end schedules the energy sources
(such as conventional and modern renewable energy grids) to
the appliances automatically. However, the proposed scheduling
scheme may not be cost-effective, as the objective is to solely
schedule the energy sources. A repeated energy scheduling
game is demonstrated by Song et al. for minimizing energy
consumption cost [16]. To model the proposed scheme, two
types of customers are considered — self-interested and fore-
sighted.

The proposed scheduling schemes in the literature only focus
on the static behavior of energy demands from the customers.
Therefore, there is need to propose an adaptive scheme, which
can schedule the demands of appliances dynamically. In this
paper, we propose a dynamic demand scheduling scheme,
which is cost-effective and reliable.

III. SYSTEM MODEL

Let us consider a system consisting of T time-slots, and
denoted by a set T , where T = {1, 2, ..., T}. An energy
scheduler is implemented at each of the customers’ homes for
scheduling appliances according to the real-time price, so as
to minimize the energy consumption cost. In such a setting,
we consider two types of appliances — shiftable such as
washing machine and fridge, and non-shiftable such as light
and fan. Shiftable appliances can be scheduled at any time-
slot throughout a day. On the contrary, non-shiftable appliances
cannot be scheduled to any other time-slot from the current
time-slot in which the demand is generated. Let us also consider
that there are A number of appliances at a customer’s home,
which is denoted by a set A, where A = {1, 2, ..., A}.
Therefore, each customer has his/her appliances and consume
energy according to his/her requirements. In such a scenario,
the scheduler schedules the appliances in such a manner that the
overall energy consumption cost to the customer is minimized.
As discussed before, in this work, we consider both shiftable
and non-shiftable appliances. Additionally, if total demand from
the customers is greater than the total supply to the grid, the
customers’ energy consumption activities can be interrupted byAc
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Fig. 1: Schematic smart grid architecture used in this work

the grid. Figure 1 shows the communication architecture of the
smart grid considered in this work. The data aggregator units
(DAUs) act as relays between the customers and the service
provider. All the appliances, which communicate for consuming
electricity are connected to the scheduler. According to the real-
time price and requested energy, the scheduler schedules the
appliances.

A. Energy Consumption Profile

In the scheduling approach, some of the appliances are
scheduled from one time-slot to another one. Therefore, the
energy request in a particular time-slot is a combination of
energy requests generated in that time-slot and the scheduled
ones from previous time-slots. Let Kt be the set of appli-
ances whose energy requests are to be served at time-slot,
t, where K ∈ A. In such a case, Kt is the combination
of the set of appliances Mt, which are scheduled at time-
slot, t, from the previous time-slots, and the set of appliances
Nt, whose demand is generated at time-slot, t. Therefore,
Kt is represented as |Kt| = |Mt| + |Nt|. If the energy
consumption of any appliance, k, is xkt , for unit time, and
its running time is τkt , then the total energy consumption by
Kt appliances at time-slot, t, can be represented as follows.
XKt =

∑M
i=1 x

k
i,tτ

k
i,t +

∑N
j=1 x

k
j,tτ

k
j,t, where i, j ∈ A where

M and N are the number of appliances in the set Mt and
Nt, respectively. Consequently, the objective of the customer is
to minimize the total energy consumption cost with real-time
pricing, pt, which is formulated as follows.

Minimize
T∑

t=1

pt

Mt∑
i=1

xki,tτ
k
i,t +

Nt∑
j=1

xkj,tτ
k
j,t


subject to

T∑
t=1

xi,t ≥ X req
t , (1)

pmin
t ≤ pt ≤ pmax

t (2)

In the optimization problem, Equation (1) illustrates that the
total energy consumed by the customers must be greater than
or equal to the energy required. The real-time price, pt, has
both minimum and maximum values, as shown in Equation
(2). Therefore, the optimization problem is formulated in such a
way that the overall energy consumption cost to the customers is

minimized, while considering all the constraints. Consequently,
it is necessary to schedule the appliances in an optimal manner,
so that the total energy requirements of the customers are
fulfilled with minimum cost.

B. Registration of Appliances with Scheduler
All the appliances installed at the customers’ end undergo a

registration process with the scheduler. The appliances commu-
nicate with the scheduler with the following message format:
<ID, Req, Prio>, where ID is the appliance ID, Req is the
required energy, and Prio is the priority of the appliance.
The priority of the appliances is considered as shiftable and
non-shiftable, where, as discussed in Section I, the shiftable
appliances can be scheduled to next time-slots, whereas the
non-shiftable ones cannot be.

C. Repository
We consider a database for maintaining the history of the

past data for D days. It also contains all information about the
appliances, i.e., ID, required energy, time, and real-time price
of energy. Therefore, the repository maintains the following
information:
• Real-time price of energy for last D days in each time-

slot, t. It fetches the information from smart meter at the
completion of every time-slot.

• It saves a customer’s day-ahead energy demand at different
time-slots.

• It also contains the priority of the appliances and required
energy to run a particular appliance per unit time.

D. Use of Optimal Portfolio
The objective of this work is to optimize the energy consump-

tion cost to the customers, while meeting all the constraints
discussed in Section III-A. The customers schedule their appli-
ances in different time-slots, for which their utility increases.
However, in general, risk (i.e., price uncertainty) to the cus-
tomers may be higher, while expecting higher utility value
(i.e., profit return), which, in turn, maximizes the customers’
energy consumption cost. Therefore, all the appliances are to
be scheduled in such a manner that the total profit return and
the corresponding risk involved in the scheduling process are
moderate. Consequently, an optimization technique needs to be
incorporated, which can estimate the expected demand and the
profit return at different time-slots to optimize both the cost and
risk to the customers. The theory of Optimal Portfolio Selection
[7] is useful to design a cost-effective energy consumption
scheme in the smart grid architecture in order to schedule
the appliances optimally in different time-slots. In general,
optimal portfolio theory ensures optimal investment of assets
with maximum profit return. In this work, we use the concept of
optimal portfolio to compute optimal distribution of demands
of a customer over different time-slots, while considering the
expected profit return and the associated risk.

IV. OPTIMAL PORTFOLIO SELECTION

As discussed before, in order to optimize the energy con-
sumption cost to the customers, we use the theory of Optimal
Portfolio Selection Strategy [7] in the context of smart grid
architecture, as discussed in Section III-D.Ac
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A. Prerequisites

Optimal portfolio selection strategy determines the optimal
weight vector, which helps to calculate the expected optimal
energy demands of a customer in different time-slots throughout
a day. It takes the real-time price information of last D days
with the weight graph of energy, and calculates the expected
profit return and risk. Therefore, if pdt denotes the real-time
price of energy at time-slot, t, of the dth day, then the profit
return of that time-slot is expressed as: Pd

t =
pmax
t −pd

t

pmax
t

, where
pmax
t is the maximum price of energy. Therefore, the expected

profit return, Pexp
t , for time-slot, t, is expressed as follows.

Pexp
t =

∑D
d=1 Pd

t

D
(3)

1) Expected Demand: Let Ed be the total actual demand of
energy of the dth day of a customer. Therefore, the expected
total demand, Eexp

d , of the dth day of the customer is computed
from the history of the last D days, as Eexp

d =
∑D

d=1 Ed

D .
Therefore, the expected demand is the average daily power
profile of a customer, so that his/her energy requirement for
the day is fulfilled.

2) Expected Profit Return: Let xexpt be the part of energy
consumed from the grid at tth time-slot. Therefore, xexpt is
expressed as follows xexpt =

X exp
t

Eexp
d

, while maintaining the

constraint
∑T

t=1 x
exp
t = 1, where X exp

t is the expected demand
at time-slot, t. Therefore, the expected total profit return of the
dth day is calculated as:

Pexp
d =

T∑
t=1

xexpt P
exp
t (4)

3) Expected Risk: The corresponding risk in the computation
of the weight graph is computed from the relative variation
between different profit returns in the past D days, which,
in turn, illustrates the variation between the expected and the
actual prices to the customer. The expected risk at time-slot t
is represented as follows:

Rexp
t = σijx

exp
i xexpj , i 6= j, and i, j ∈ T (5)

where σij is the co-variance between the ith and the jth time-
slots, and mathematically,

σij =

∑D
d=1

[(
Pd
i − P

exp
i

) (
Pd
j − P

exp
j

)]
D

(6)

Therefore, the total expected risk is expressed as follows.

Rexp
d =

T∑
i=1

T∑
j=1

σijx
exp
i xexpj , i 6= j (7)

4) Utility: With the computation of the expected profit
return, Pexp

t , and the expected risk, Rexp
t , the optimal portfolio

searches the optimal pairs of Pexp
d and Rexp

d , for which the
utility of the customer increases. Therefore, the corresponding
utility of the customer at the tth time-slot is computed as
Ut = xexpt P

exp
t − xexpi P

exp
i . The utility of the customer is the

difference between the profit return for the appliances’ demand
generated at the ith time-slot and the one served at the tth time-
slot. Thus, the utility of the customer for a day is computed as

U =
∑T

t=1 x
exp
t P

exp
t −

∑T
i=1 x

exp
i P

exp
i .

B. Weight Graph Calculation

Optimal Portfolio Selection Strategy helps in computing the
corresponding utility (refer to Section IV-A4) for different
time-slots, and determining the weight vector over different
time-slots. Therefore, the optimal weight vector is obtained at
different time-slots in a day for which the total profit return is
maximized, while considering the corresponding risk. There-
fore, the weight graph of energy for a day is the aggregation of
the expected demand (X exp

t ) from a customer for each time-slot
t ∈ T . Mathematically,

Wd = [X exp
1 ,X exp

2 , · · · ,X exp
t , · · · ,X exp

T ]

where X exp
t = xexpt Eexp

d , ∀t ∈ T (8)

and xexpt is the weightage for time-slot t depending on the past
days’ profit return and the associated risk. The algorithm for
weight graph calculation is presented in Algorithm 1.

Algorithm 1: Weight Graph Calculation
Input: Price and demand history of last D days
Output: Weight Graph of energy throughout a day
Calculate expected profit return, Pexp

t , according to1

Equation (3);
Calculate expected risk, Rexp

t , according to Equation (5);2

Calculate optimal weightage of energy demand, xexpi , for3

each time-slots according to Pexp
t and Rexp

t ;
for i = 1 to T do4

X exp
i ← xexpi Eexp

d ;5

C. Pricing policy

In the proposed scheme, we consider multiple customers
consume energy from a single utility provider. The customers
form a group among themselves, and can be treated as ‘com-
munity’ users. Depending on the demand from the customers
to the grid, the on-peak, mid-peak, and off-peak hours are
estimated. We adopt an usage-based dynamic pricing policy
[17] to determine the real-time price of energy which is used
just as proxy to update the price signal throughout the day in
response to customers’ energy consumption. We also consider
that the real-time price in a particular time-slot remains same
throughout the entire time-slot, as considered in [6]. Therefore,
the energy price is set in real-time based on the demand from
the customers, and it also rolls throughout the day.

D. Dynamic Appliance Scheduling Algorithm

After calculating the expected demand, risk, and profit return,
we present an algorithm for dynamically scheduling the appli-
ances in an optimal manner, so that the corresponding energy
consumption cost is minimized. The proposed scheme uses the
dynamic behavior of energy demand, profit return and risk to
the customers, and schedules the appliances dynamically.

The proposed algorithm dynamically changes the weight
graph in the beginning of each time period and schedules theAc
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Algorithm 2: Dynamic scheduling of the appliances at
time-slot t
Input: Weight-graph from Algorithm 1, Expected profit

return, Pexp
t , and Expected risk, Rexp

t .
Output: Scheduling of appliances at time-slot t
Calculate remaining required energy, Eexp

rem =
∑T

i=t X
exp
i ;1

Calculate profit, Pexp
t , and risk, Rexp

t ;2

if Pt ≥ Pexp
t and Rt ≤ Rexp

t then3

Increase expected profit and risk;4

Change expected demand as Xnew
t ;5

Calculate variance, σt = Xnew
t −X exp

t ;6

for i = t+ 1 to T do7

X exp
i = X exp

t − σt
X exp

i

Eexp
rem

;8

if Pt < Pexp
t and Rt > Rexp

t then9

Decrease expected profit and risk;10

Change expected demand as Xnew
t by deferring11

low-priority appliances;
Calculate variance, σt = X exp

t −Xnew
t ;12

for i = t+ 1 to T do13

X exp
i = X exp

t + σt
X exp

i

Eexp
rem

;14

Schedule deferred demand, XNt , from previous time-slots;15

Calculate remaining demand, X rem
t = X exp

t −XNt ;16

Calculate total demand generated at tth time-slot, XLt ;17

if XLt ≤ X rem
t then18

Xt = XNt + XLt , Schedule all appliances;19

else20

Schedule the set of appliances, Mt, at time-slot t,21

such that XMt ≤ X rem
t , and Xt = Xt + XMt ;

Compute remaining number of appliances, Arem;22

for i = 1 to Arem do23

if X i
t ≤ X

exp
j , ∀j ∈ [t+ 1, T ] then24

Reschedule ith appliance to jth time-slot;25

Send final demand, Xt, to grid at time-slot t;26

Fig. 2: Flow-chart of the proposed scheme

appliance’s demand according to the changed weight graph.
The scheduler gets the real-time price from the smart meter
and increases/decreases the expected demand of that time-slot,

by calculating the expected price and risk with the announced
price and risk, respectively. The proposed algorithm is presented
in Algorithm 2. According to the weight-graph, the scheduler
schedules the requested demands in different time-slots. There-
fore, the customers and utilities need to collect the price and
demand information, respectively. The utilities decide the real-
time price of energy according to the requested demand from
the customers. After collecting the pricing information, the
customers schedule their appliances accordingly to minimize
the energy consumption cost and the associated risk. Therefore,
a particular customer is independent from other customers,
as the proposed approach completely schedule the appliances
according to real-time price, energy cost, and the associated
risk. Consequently, the customer is not affected by other cus-
tomers’ scheduling strategies. The proposed scheme schedules
the appliances in a cost-effective manner, while maintaining
fairness among the customers. Additionally, we present the
flow-chart of the proposed scheme in Figure 2 for individual
customers.

V. SIMULATION AND RESULTS

To simulate the proposed dynamic scheduling scheme, we
used the MATLAB simulation software. All the parameters used
in the simulation process are presented in Table I. We consider
multiple customers in the proposed scheme. However, we
present the demand related parameters for individual customers.

TABLE I: Simulation Parameters

Parameter Value
Energy price 7.0-15.0 cents/kWh
Energy demand per day 20− 50 kWh
Number of time-slots 24
Number of days in database (D) 50
Maximum delay 6 hours
High peak 12.0 cents/kWh
Mid peak 9.0 cents/kWh
Appliance flexibility rate 10% - 100%

A. Benchmark

The performance of the proposed dynamic appliance schedul-
ing algorithm (D2S) is evaluated by comparing it with the
existing state-of-art, i.e, the iHEM appliance scheduling al-
gorithm [6], proposed by Erol-Kantarci and Mouftah. The
benchmark algorithm, iHEM, is a wireless sensor network-
based appliance scheduling algorithm, in which the generated
appliance demands are scheduled in off-peak time periods by
considering delay up to a possible extent. The authors also
proposed the concept of scheduling the appliances in mid-peak,
if the delay is more than the threshold delay for the off-peak
period. Additionally, the authors also considered the flexibility
of the appliances, in which the appliances can be served if
both the off-peak and mid-peak are far than the possible extent
considered. Therefore, once the appliances are scheduled in a
time-slot, they cannot be scheduled in other time-slots, even
though the real-time price is high in that time-slot.Ac
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Conversely, the proposed scheme schedules the appliances
dynamically with dynamic pricing policy. Therefore, all the
customers schedule their appliances, while considering the
expected profit return and corresponding risk as well. Con-
sequently, the appliances can be rescheduled from one time-
slot to another, if the real-time price in that time-slot is high,
i.e., profit return is low. We evaluate the performance of the
proposed scheme (D2S) with the following performance metrics
discussed below.

B. Performance Metrics

Different metrics are used to analyze the performance of the
proposed scheme. We elaborate all the performance metrics as
follows.

1) Demand Scheduled in Peak-hours: The energy demand
can be scheduled in three different hours — on-peak, off-
peak, and mid-peak. It is cost-expensive to the customers
if the demand is scheduled in the on-peak hours, which in
turn, increases energy load on the grid. Consequently, we
compute the percentage of demand scheduled in the on-peak
hours, which can be treated as the ratio of energy consumed
in the peak-hours and the total demand from the customers.
Mathematically,

XD
peak

XD × 100%.
2) Demand Scheduled with High-risk: As in Section V-B1,

energy demand from the appliances may be scheduled with
different risk values. Customers always want to consume energy
with low-risk, while concurrently minimizing the energy con-
sumption cost (as in general, the profit return is low with low-
risk). Therefore, the percentage of energy demand scheduled
with high-risk is evaluated, which increases the uncertainty to
the customers about the minimization of energy consumption
cost. Mathematically,

RD
high

RD × 100%.
3) Variation in Demand Distribution: Variation of demand is

calculated as the mean demand distributed from one time-slot to
reduce the energy consumption cost. We take the mean value
for the distributed demand throughout the day-ahead energy
demand of the customers. Therefore, the variation in demand
distribution is represented as: Xt − X̃t, where Xt and X̃t are
the served energy and mean energy, respectively.

4) Cost of energy: Cost of energy is calculated as the cost in-
curred by the customer for the day-ahead energy consumption.
Therefore, the cost of energy is represented as Cd =

∑T
t=1 Xtpt.

5) Utility: The utility of customers is shown as their profit
gain over the no scheduling and the static scheduling [6]
schemes. Therefore, the utility of the customers is represented
as:

U =

{
Cno sch − Cdyn sch, over no scheduling
CiHEM − Cdyn sch, over iHEM (9)

where Cno sch, Cdyn sch, and CiHEM are the energy cost in-
curred by the customers with no scheduling, dynamic schedul-
ing (proposed), and static scheduling, respectively.

C. Results and Discussion

According to the performance metrics discussed above, we
show the performance of the proposed approach compared with
the iHEM [6] and “no scheduling” schemes. We evaluate the

results for multiple customers. We adopt the use of confidence
interval (95%) to show the effectiveness of the proposed
scheme. In such a setting, the confidence interval shows the
variance of specific performance metrics for the customers,
while depicting the upper and lower values. Therefore, the
specified interval demonstrates that the value for the particular
metric is bounded by the upper and lower values for all
customers. Consequently, we are able to show that the proposed
scheme (D2S) outperforms the existing schemes with multiple
customers, as shown in the subsequent sections.

1) Weight Graph: Figure 3 shows an example of the weight
graph of energy obtained after computing the expected profit
return and risk for a particular day. Different weights of the
weight graph are differentiated by different values of profit
return and risk (variations in profit return). Higher profit return
with satisfactory risk depicts higher weight in any time period
and vice-versa. We assume that the satisfactory risk for a time-
slot is the expected risk at that time-slot. However, higher profit
return and higher risk outputs moderate the amount of energy
weight in that time period.
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Fig. 3: Weight Graph

2) Demand Scheduled in Peak-hours: Figure 4 shows the
percentage of demand scheduled in peak-hours with different
schemes. The proposed approach yields better performance than
that of the other schemes. Therefore, we can infer that the peak-
demand is also relieved from the grid with the implementation
of the proposed scheme, which is one of most useful char-
acteristics of the smart grid. In case of iHEM, the customers
schedule their appliances in the subsequent time-slots, if the
current time-slot is on-peak or mid-peak and the appliance is
shiftable. However, due to the static scheduling of appliances
without considering the corresponding risk, the off-peak hours
transform into on-peak hours. Therefore, the percentage of
peak-demand is quite high for the iHEM scheduling scheme.
Similarly, in case of “no-scheduling”, the customers consume
energy according to the generated demand, which, in turn,
produces on-peak hours in the smart grid. On the contrary,
D2S schedules the appliances dynamically over different time-
slots, while considering the profit return and the associated risk.
Therefore, the use of D2S leads lower on-peak hours than that
of the iHEM and no-scheduling schemes.

3) Demand Scheduled with High-risk: The proposed scheme
schedules the appliances, while concurrently considering the
expected profit return and risk, as discussed in Section IV.
We show that the risk involved in the scheduling process
in the proposed scheme in comparison with iHEM and “no
scheduling” in Figure 5. From the figure, we observe that the
risk to the customers in the scheduling scheme is also lowerAc
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Fig. 9: Energy cost with different ap-
pliance flexibility rate

with D2S than the other existing schemes. As the percentage
of generation of on-peak hours is low for the proposed scheme
(refer to Figure 4), the corresponding risk is also low to the
customers. In contrast, the customers incur high risks in using
the iHEM scheme due to the high percentage of on-peak
demand.

4) Mean demand distribution: Figure 6 shows the variation
in demand distribution with different schemes. The higher mean
demand distribution influences higher variability in scheduled
demand in consecutive time periods and vice-versa. In case of
iHEM, variability is more, as demand is scheduled according
to off-peak period and threshold delay. Average mean demand
distribution value of 3 months in case of the iHEM algorithm
is 2.2 kWh. In the “no scheduling” case, the average mean
demand distribution value is 1.08 kWh, and using the proposed
scheme, it is 0.93 kWh.

5) Cost of energy: We compare the performance of the pro-
posed scheme with the iHEM and the “no scheduling” scheme,
as discussed earlier. With no energy scheduling scheme, ap-
pliances’ requests are serviced in the requested time period
without considering profit and risk. On the other hand, using
the iHEM scheduling algorithm, the requested energy demands
are scheduled depending on the peak price periods and the
threshold delay. Figure 7 shows the energy consumption cost
incurred by a customer in different days. Therefore, the energy
cost to the customers is reduced with the dynamic appliance
scheduling scheme than that with the static scheduling and
no scheduling scheme. Figure 8 shows the total cost incurred
by the customer for different running times. The results show
that though iHEM yields almost same performance with the
static pricing policy, however, the proposed scheme always

does so with the dynamic pricing policy. Figure 9 shows the
average cost of energy to the customers with different appliance
flexibility rate such as 10%, 20%, 30%, 50%, 75%, and 100%.
The energy cost to the customers with lower flexibility rate
(such as 10% and 20%) is higher than that with higher flexibility
rate (such as 50%, 75%, and 100%). However, the change in the
energy cost to the customers is moderate when the flexibility
rate is on or above 50%. We see that the proposed scheme, D2S,
also performs well than the existing schemes with different
appliance flexibility rate.

6) Benefit of Customers: Benefit of the customers is calcu-
lated as the profit gain with the proposed scheme over the iHEM
and no scheduling scheme, as discussed in Section V-B5. Figure
10 shows the corresponding utility obtained with different
schemes. Higher values of utility shows higher benefit to the
customer with the proposed scheme over the other existing
schemes, when dynamic pricing policy is employed. In case
of the iHEM and the “no-scheduling” schemes, the energy
consumption cost to the customers is very high, which, in turn,
minimizes the customers’ benefit. Consequently, we see that the
dynamic demand scheduling scheme (D2S) has great impact on
cost-effective energy consumption to the customers. Similar to
the cost of energy to the customers, we also evaluate benefit
to the customers with different appliance flexibility rate, as
shown in Figure 11. The percentage of benefit to the customers
increases with an increase in the flexibility rate. We see that the
benefit to the customers increases on an average only 5− 10%
with lower flexibility rates (such as 10%, 20%, and 30%).
However, the benefit to the customers increases approximately
25% for higher flexibility rate. Additionally, we observe thatAc
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change in the benefit value is moderate with the proposed
scheme, D2S, with higher flexibility rates over the existing
scheme, iHEM.

VI. DISCUSSIONS: PRACTICAL PERSPECTIVE

In this section, we briefly present different applications of the
proposed scheme, D2S, from a practical perspective. The main
objective of the proposed scheme is home energy management
(HEM) in the smart grid environment. Therefore, the pri-
mary application of the proposed scheme is residential energy
management in a cost-effective manner, which is reflected in
the simulation results. Additionally, with the dynamic demand
scheduling facility, the peak-load on the grid is also relieved,
which, in turn, helps to maintain supply-demand curve. There-
fore, the proposed scheme is also capable of implementing the
demand response mechanism. In a practical scenario, different
customers may have different appliance flexibility rates, i.e.,
number of flexible appliances, which can be scheduled in dif-
ferent time-slots, varies from one customer to other customers.
To address such practical issues, energy cost to the customers
is evaluated with different appliance flexibility rates. Therefore,
it is evident that the proposed scheme, D2S, is useful in the
practical applications.

VII. CONCLUSION

In this paper, we proposed a dynamic appliance scheduling
scheme, D2S, using the theory of Optimal Portfolio Selection
Strategy. The proposed scheme schedules appliances dynami-
cally in different time periods, while considering the expected
profit return and risk factors. The day-ahead energy requirement
of a customer is generated in different time-slots using the
history of demands, and it is termed as the weight graph
of energy. After computing the weight graph, the scheduler
schedules the appliances dynamically in different time-slots, for
which the utility of the customer is increased. The simulation
results show that D2S always outperforms the existing one with
dynamic pricing policy. The average utility of the customer
increases approximately 28.2% over the iHEM [6] and “no
scheduling” schemes.

In this work, we considered rational customers with different
appliances, which may not be true in real-life scenarios. There-
fore, we plan to incorporate heterogeneity of the customers’
behaviors as the future extension of this work. Additionally,
the imbibing of cooperation among customers to improve the

reliability of energy supply is also a future extension of this
work.
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