
1

FlowStat: Adaptive Flow-Rule Placement for
Per-Flow Statistics in SDN

Samaresh Bera, Student Member, IEEE, Sudip Misra, Senior Member, IEEE,
and Abbas Jamalipour, Fellow, IEEE,

Abstract—In this paper, we propose an adaptive flow-rule
placement scheme, FlowStat, in software-defined network (SDN)
with an aim to provide per-flow statistics to SDN controller,
while enhancing overall network performance. The proposed
scheme consists of three phases — forwarding path selection,
flow-rule placement, and rule redistribution. In the first phase, we
formulate a max-flow-min-cost optimization problem to determine
optimal forwarding paths while considering multi-commodity
flows with heterogeneous requirements. In the second phase,
an integer linear programming (ILP) problem is formulated to
decide forwarding rules for paths computed in the first phase, so
that total number of exact-match is minimized. As finding optimal
solution to the problems is NP-hard, we propose two greedy
heuristic approaches to solve the problems in polynomial time.
Finally, we propose a rule redistribution scheme on detecting rule
congestion at a switch, in order to accommodate new flows in the
network. Extensive experimental results show that the proposed
scheme, FlowStat, is capable of providing per-flow statistics
to the SDN controller, while enhancing network performance
compared to existing schemes — ReWiFlow and ExactMatch. In
particular, FlowStat is capable of reducing end-to-end delay and
QoS violation by 46% and 75% (approx.), respectively, compared
to the ReWiFlow and ExactMatch schemes, while providing 85%
accurate per-flow statistics to the SDN controller.

Index Terms—Software-defined networks, Per-flow statistics,
rule placement, optimization

I. INTRODUCTION

The growing concerns about digitization of everything
necessitate the current best-effort Internet technology to be
modified, in order to support new services and applications [1],
[2]. Further, over-provisioning of bandwidth in current Internet
increases CAPEX and OPEX to service providers, while im-
posing different challenges in supporting new applications and
services. This is due to the vendor-specific architecture of for-
warding devices (i.e., switches and routers). Software-defined
network (SDN) architecture is a viable approach to address
the limitations of the current Internet while decoupling the
control-plane from forwarding devices [3]–[6]. In the control-
plane, a logically centralized controller controls the forwarding
devices by deciding control-logics and placing them at the
devices in the form of flow-rules [2], [7]. Consequently, the
SDN architecture provides a logically centralized view of the
network which yields better utilization of network resources
and improved network management. Further, network function

S. Bera, S. Misra are with the Computer Science and Engineering De-
partment, Indian Institute of Technology, Kharagpur, 721302, India, Email:
s.bera.1989@ieee.org, smisra@cse.iitkgp.ac.in

A. Jamalipour is with the School of Electrical & Information Engineering,
University of Sydney, Australia, Email: a.jamalipour@ieee.org

virtualization (NFV) is also introduced for placing network
functions at the network components in real-time [8], [9].

A. Motivation

The flow-rules defined by the SDN controller are installed at
the switches by utilizing ternary content-addressable memory
(TCAM). The TCAM available at a switch is limited due
to high cost and energy consumption. As a result, due to
limited TCAM, number of flow-rules that can be inserted at
a switch is also limited. To place flow-rules at the switches,
researchers proposed three different strategies — exact-match,
wildcard, and hybrid. In exact-match, each flow1 is associ-
ated with an individual rule, and thereby, increases network
visibility. However, such an approach leads to frequent rule
replacement, thereby increasing controller overhead and net-
work delay. On the other hand, in wildcard-based strategy,
multiple flows are associated with a few flow-rules. Although
the wildcard approach reduces the requirement of frequent
rule replacement, it decreases the network visibility, which,
in turn, leads to incorrect forwarding decisions and QoS
violations. In hybrid approach, combination of exact-match
and wildcard is considered. Figure 1 presents the issues present
in SDN from the aspects of flow-rule placement. Figure 1(a)
presents an example of rule overflow problem due to exact-
match rule placement. In exact-match, to accommodate a new
flow, existing rules are deleted irrespective of whether they
are active or not. Consequently, more flow-rule installation
requests are generated in the form of Packet-In2 messages,
which, in turn, increases controller overhead. In contrast, the
controller does not have exact flow information in case of
wildcard rule placement, as depicted in Figure 1(b). When
an incoming packet is matched with an existing rule, it is
forwarded according to the desired action without notifying the
SDN controller. As presented in Figure 1(b), the packet which
comes later matches with the existing rule and is forwarded in
the network. However, this particular packet can be malicious
to the network. Thus, security concerns are required to be
considered while placing wild-card rules at the switches.
Moreover, a network supporting heterogeneous applications
includes both mice and elephant flows, which may lead to
inefficient rule-space utilization, as depicted in Figure 1(c).
Motivated by these facts, we intend to propose an adaptive

1A flow is defined as stream of packets.
2A Packet-In message is generated when an incoming flow does not match

with the flow-rules installed at the switch. It contains meta-data of the packet.
Interested readers may refer to [10] for details.

Fo
r p

ers
on

al
us

e o
nly

2

(a) Exact-match: rule OVERFLOW (b) Wildcard: UNSEEN flows (c) INEFFICIENT rule-space utilization

Fig. 1: Issues in TCAM-based rule placement in SDN

flow-rule placement scheme while considering the advantages
of both the exact-match and wildcard approaches.

B. Contribution

We propose an adaptive flow-rule placement scheme with
an aim to maximize the number of flows that can be accom-
modated in the network, while increasing network visibility.
The proposed scheme consists of three phases — forwarding
path selection, flow-rule placement, and rule redistribution. In
forwarding path selection phase, we formulate an optimiza-
tion problem to select optimal paths for routing flows from
source to destination in the network. In the second phase,
we formulate another optimization problem to select optimal
number of switches in the selected paths for exact-match rules
placement, so that per-flow traffic statistics are obtained at
the SDN controller. Finally, in the third phase, we propose a
rule redistribution scheme on detecting rule congestion at the
switches. The problem is challenging due to the rule-space
and network capacity constraints, and QoS-guaranteed routing
of flows in the network, while increasing network visibility.
Figure 2 presents an overview of the proposed scheme. In

Fig. 2: Proposed solution: flows are received at the switches
in the network serially. The SDN controller places rules in
three phases upon receiving a new flow at a switch: (a) In
the first phase, the controller determines optimal forwarding
path to route the flow from source to destination; (b) In the
second phase, the controller selects optimal switch in the
selected path for exact-match rule placement in order to get
per-flow statistics; (c) Finally, flow-rule is redistributed among
the switches to accommodate new flows in the network upon
detecting rule congestion at a switch.

brief, the contributions in this work are as follows.
• We formulate a max-flow-min-cost problem from the

aspects of SDN, while considering QoS requirements of
the flows in the network. We propose a greedy heuristic

approach to solve the problem in polynomial time as the
problem is NP-hard.

• We formulate an ILP to find optimal number of switches
to place exact-match rules, in order to get per-flow
statistics. We propose a greedy heuristic approach to solve
the problem as finding optimal solution is NP-hard.

• We propose a flow-rule redistribution scheme on de-
tecting rule congestion at the switches, while ensuring
minimum number of redistribution of the rules. This helps
to accommodate new flows in the network using the
existing rule-space available at the switches.

• We evaluate the performance using Mininet network
emulator and POX SDN controller in order to show the
efficacy of the proposed scheme.

The rest of the paper is organized as follows. Section II
presents the state-of-the-art of rule placement in SDN. In
Section III, we present the detailed system architecture con-
sidered in the work with prerequisites. Section IV presents the
proposed path selection, rule placement, and rule redistribution
methods, while analyzing the computational complexity of the
proposed scheme. Section V presents the results to show the
effectiveness of the proposed scheme over existing approaches.
Section VI discusses a few use-case scenarios of the proposed
scheme. Finally, we conclude the work in Section VII while
highlighting some future research directions.

II. RELATED WORK

Recently, researchers proposed several schemes for flow-
rule placement in SDN. We categorize the existing works from
three aspects — rule placement using TCAM [11]–[15], hybrid
approach [16]–[20], and flow-statistics collection [21]–[24].
In rule placement using TCAM, flow-rules are placed at the
hardware switches by utilizing the available TCAM. On the
other hand, combination of hardware and software switches
are utilized for rule placement in hybrid approach. In flow-
statistics collection, low-cost flow monitoring schemes were
proposed. We discuss some of the existing approaches from
the above mentioned aspects.

Giroire et al. [11] proposed an energy-aware routing scheme
in SDN-enabled network. They utilized the existing rule-space
available at the hardware switches for rule placement, while
minimizing the link-utilization to reduce energy consumption.
Similarly, Nguyen et al. [12] proposed a rule placement
scheme to accommodate maximum number of flows in the net-
work. Consequently, they focused on the destination-oriented

Fo
r p

ers
on

al
us

e o
nly

3

data delivery policy without considering the associated cost
and delay in traffic forwarding. A joint optimization scheme
for rule placement and traffic engineering scheme was pro-
posed by Huang et al. [13]. The authors considered the avail-
able TCAM capacity to place flow-rules, while considering the
QoS requirements of flows. Therefore, a trade-off between the
rule placement and QoS-guaranteed data delivery is imposed
in the network. Rifai et al. [14] proposed a rule-compression
mechanism to accommodate large number of flows in the
network with reduced network visibility. Recently, a mobility-
aware adaptive flow-rule placement scheme was proposed, in
which the flow-rules are placed at software-defined access
points according to end-users’ mobility in the network [15].
The authors showed that the proposed scheme is beneficial for
minimizing delay and associated cost in data delivery.

Katta et al. [16] utilized the benefits of hardware and
software switches for rule placement. Due to the limited
TCAM, rules associated with heavy-hitter flows were installed
at the TCAM for fast processing. On the other hand, the rules
with low-counter value were placed at the software switches.
Further, rules were redistributed between hardware and soft-
ware switches, while considering rule-dependency problem.
Similarly, Kentis et al. [19] also proposed rule placement
scheme while utilizing both hardware and software switches.
However, in such schemes, computational complexity is very
high due to the rule dependency problem between software
and hardware switches, as reported in [19]. Further, packet
processing delay is increased due to the use of software
switches.

Su et al. [22] proposed a low-cost flow monitoring scheme
in SDN. The authors proposed an optimal polling scheme to
get per-flow-rule statistics in the network, while reducing com-
munication overhead. Kamisinski and Fung [23] proposed an
efficient flow-monitoring scheme to detect anomaly switches
in the network. Two types of anomalies were considered –
packet dropper and swapper. In the proposed scheme, the SDN
controller collects flow-statistics from the switches periodi-
cally. Further, the flow-statistics were analyzed to detect the
presence of anomaly switches in the network.

Synthesis: Detailed analysis of the existing schemes reveals
that there exists a research lacuna on rule placement policies
for QoS-guaranteed data delivery, while providing per-flow
statistics to the controller. The existing schemes either focused
on the utilization of hardware and software switches for rule
placement or per-flow-rule statistics collection. However, in
a practical scenario, both are equally important for efficient
network management in the presence of heterogeneous flows
in the network. Moreover, providing per-flow statistics to
the SDN controller is a crucial challenge, while considering
limited TCAM available at the switches.

III. SYSTEM MODEL

Let us consider the SDN-enabled backbone network as a
directed graph G with rule and link capacities, i.e., G = (S, E),
where S is the set of switches and E is the set of edges
in the graph. Each switch i ∈ S has a limited TCAM, and
the switches are homogeneous in nature. Further, each link

TABLE I: List of symbols

Symbol Description
S Set of switches in the network
E Set of links in the network
Ci,j Capacity of a link (i, j), i, j ∈ S
di,j Delay of a link (i, j), i, j ∈ S
li,j Loss of a link (i, j), i, j ∈ S
F Set of flows in the network
Fi,j Set of flows over link (i, j)

F f
i,j A flow in Fi,j

f A flow in the network
Rmax

i Rule capacity of a switch i ∈ S
Rutil

i Rule capacity utilization of a switch i ∈ S
Cutil

i,j Link capacity utilization of a link (i, j)

Φf
i,j Routing cost of flow f ∈ F over link (i, j)

(i, j) ∈ E has a positive capacity to carry incoming traffic.
In this work, we consider that bandwidth and delay are two
factors associated with a link. List of symbols used in this
work is presented in Table I.

A. Prerequisites

Definition 1. Single Commodity Flow: A single commodity
flow is defined as follows:

Fi,j ≤ Ci,j ,∀(i, j) ∈ E (1)∑
(i,j)∈(i,j)out(i)

|Fi,j | =
∑

(i,j)∈(i,j)in(i)

|Fi,j |,∀i, j ∈ S \ {s, t} (2)

and ∑
(i,j)∈(i,j)out(s)

|Fi,j | =
∑

(i,j)∈(i,j)in(t)

|Fi,j | = |F| (3)

where F and Fi,j denote the set of flows in the network and
set of flows over the link (i, j), respectively. Further, s and
t denote the source and destination of the flow, respectively.
Equations (2) and (3) preserve the flow conservation proper-
ties.

Definition 2. Multi-Commodity Flow: In multi-commodity
flow, multiple source and destination are present in the same
network with varying demands of the flow. It is defined as
follows: ∑

f∈Fi,j

γfF f
i,j ≤ Ci,j ,∀(i, j) ∈ E (4)

and Eqn. (2), (3) for flow conservation.
Equation (4) confirms that the total demand of flows routed
through a link is always within the link capacity. γf denotes
the demand of the flow f ∈ Fi,j .

Definition 3. Unsplittable Flow: A flow f ∈ F is called
unsplittable flow if the set of links (i, j) ∈ E | F f

i,j > 0 forms a
simple cycle-free path from source s ∈ S to destination t ∈ S.
Mathematically,∑

F f
s,i =

∑
F f
i,j =

∑
F f
j,t,∀s, i, j, t ∈ S

Fo
r p

ers
on

al
us

e o
nly

4

IV. PROPOSED RULE PLACEMENT SCHEME

A. Forwarding Path Selection

One of the primary objectives of the proposed scheme is
to accommodate maximum number of flows in the network,
while minimizing associated cost. We design a cost function
Φi,j to forward a flow over a link (i, j) ∈ E while considering
start-up cost for link activation σ, rule-utilization of the
forwarding switch i ∈ S, and link-utilization. Mathematically,

Φi,j = σbi,j + α
Rutil

i

Rmax
i

+ β
Cutil

i,j

Ci,j
(5)

where bi,j is a boolean parameter to denote whether a new link
is selected to forward the flow. Terms α and β are predefined
constants used to capture application-specific requirements.
The value of the constants are user-defined. We formulate a
max-flow-min-cost problem to determine optimal forwarding
paths while considering QoS requirements of flows and net-
work constraints. Mathematically,

max
f

min
(i,j)

∑
f∈F

∑
(i,j)∈E

F f
i,jΦi,jx

f
i,j ,∀(i, j) ∈ E (6a)

s.t.
∑
f∈F

γfxfi,j ≤ Ci,j (6b)

Rutil
i ≤ Rmax

i ,∀i ∈ S (6c)

freq[d, l,−γ]xfi,j � [di,j , li,j ,−Ci,j] (6d)

Eqn. (2) and (3) (6e)

The objective function denotes that minimum number of links
are selected while accommodating maximum number of flows
in the network, in order to minimize associate cost. Φi,j

denotes the cost associated with the link (i, j) to route a flow,
as presented in Equation (5). Equation (6b) ensures the link
capacity constraint, i.e., total required capacity of the flows
that can be routed through a link (i, j) is always less than
or equal to the capacity of the link. Similarly, the number
of flow-rules installed at a switch i ∈ S is always less
than or equal to the maximum number of rules that can be
inserted at the switch due to limited TCAM, as denoted in
Equation (6c). Further, application-specific requirements are
considered in Equation (6d) while routing the flows in the
network. The tuple < d, l, γ > denotes the delay, loss, and
bandwidth requirements of a flow, and it should be fulfilled
while choosing a link (i, j) to route the flow. We use the
notations −γ and −Ci,j to denote component-wise inequality
between vectors [25].

The optimization problem in Equation (6a) consists of two
integer linear programming (ILP) problems. The first ILP is
about the maximization of flows that can be accommodated
in the capacitated network while considering link-capacity and
rule-capacity constraints. On the other hand, the second ILP is
about the minimization of associated cost, while considering
flow-requirements, link-capacity, and rule-capacity. Mathemat-
ically,

 0.3

 0.8

 1.3

20 30 40 50

A
v

er
ag

e
C

o
st

 (
u

n
it

)

Number of Flows

Average Cost

ILP
Greedy

 10

 20

 30

 40

20 30 40 50

Q
o

S
 V

io
la

ti
o

n
 (

%
)

Number of Flows

QoS Violation

ILP
Greedy

Fig. 3: Performance comparison between ILP and proposed
greedy approach

P1: with fixed capacity P2: with fixed no. of flows

max
∑
f∈F

∑
(i,j)∈E

F f
i,jx

f
i,j (7) min

∑
f∈F

∑
(i,j)∈E

Φi,jx
f
i,j (8)

s.t. Eqn (2) and (3) s.t. Eqn. (2), (3)
Eqn. (6b), (6c) and (6d) Eqn. (6b), (6c) and (6d)

Solving the both the optimization problems in polyno-
mial time is NP-hard in general, while considering QoS
requirements of flows [26]. In other words, optimal solution
to the problem cannot be found in polynomial time, while
considering multi-constrained QoS requirements of flows in
the network. We limit our discussion on NP-hard problem as
it is well-explored in the literature [26]. To solve the problem
in polynomial time, we propose a greedy heuristic approach
for path selection to forward incoming flows by considering
the associated constraints, while reducing overall associated
cost.

Algorithm 1 presents the specific algorithm for forwarding
path selection. The proposed algorithm determines the paths
to forward incoming flows while ensuring QoS requirements
of the latter. The Yen’s K-shortest path algorithm [27] is used
in Step 3 to get k number of shortest paths in the network
for a given flow. The paths in the K-shortest paths are sorted
in ascending order based on the associated cost. Therefore,
better path is always preferred from the K-shortest paths to
forward incoming flows. When no QoS path is found, the k-th
path is chosen to forward the traffic, as presented in Step 7.
It ensures that the algorithm will work even there is no QoS
path found to forward the traffic. However, in such a situation,
the performance of the proposed scheme is degraded in terms
of delay, loss, and throughput. If we have a large value for
k, then the algorithm would take more time to determine K-
shortest paths, which, in turn, would increase the end-to-end
delay. On the other hand, if we have a small value for k, we
may not get QoS satisfied path from the obtained K-shortest
paths. Therefore, there exists a trade-off for selecting the value
of k. In the proposed scheme, we select k=3 for forwarding
path selection.

Figure 3 presents a performance comparison between ILP
and proposed greedy approach for forwarding path selection. It
is evident that the proposed greedy scheme yields competitive
performance to the ILP. Further, in case of ILP, the compu-
tation time increases exponentially with increasing number of

Fo
r p

ers
on

al
us

e o
nly

5

Algorithm 1 Forwarding path selection algorithm
Inputs: Network Graph, G, with link and node parameters

Set of flows F with requirements
Values for constants σi,j , α, and β . User defined

Output: Set of Paths P on which flows F can be routed
1: k ← 1
2: while all flows f ∈ F are not assigned paths do
3: for P in K-SHORTEST-PATHS(s, t) do
. K number of shortest paths based on cost in Eqn. (5)

4: if CHECK-QOS(P , f) then . QoS satisfied
5: flag = 1
6: Pk = P . through which f to be routed
7: if flag 6= 1 then . QoS path not found
8: Pk = P − 1

9: P ← append(Pk)
10: UPDATE CAPACITY(Pk, f) . update link-capacity
11: k ← k + 1 . kth flow to be routed using path Pk

12: function CHECK-QOS(P , f)
13: for (i, j) in P do
14: if freq[d, l,−γ] ≥ [dij , lij ,−Cij] then
15: return True
16: else
17: return False
18: function UPDATE CAPACITY(P , f)
19: for (i, j) in P do
20: Ci,j = Ci,j − γf . capacity is reduced by γf

flows.

B. Rule Placement at Switches

After selecting the paths to route the flows, we need to
select optimal number of switches, in which exact-match rules
should be installed, in order to get per-flow statistics in the
network. In other words, the objective is to minimize the
number of exact-match rules over all paths in order to reduce
rule-space utilization, and hence, accommodate more flows.
Consequently, we formulate an ILP to select the switches to
place exact-match rules in the network for the set of paths
obtained in Section IV-A. Mathematically,

min

|P|∑
k=1

∑
i∈Pk

Mexact
k yi (9a)

s.t.
∑
i∈Pk

Mexact
k yi ≥ 1,∀k ∈ |P| (9b)∑

j∈S
xi,j ≤

∑
k∈|P|

Mexact
k yi, i ∈ S, i 6= j (9c)

yi denotes a boolean variable whether a switch i ∈ S is
selected to place exact-match. Equation (9b) denotes that
atleast one exact-match is placed in a path. As a result, from
the exact-match, the SDN controller gets the per-flow statistics
in the network. Equation (9c) denotes that the number of flow-
rules at a switch i ∈ S is greater than or equal to the number
of active forwarding edges from the switch according to the
residual graph obtained from the first phase. It is noteworthy

that default flow-rules3 are installed [28] at rest of the switches
in a path associated to a flow. Similar to the optimization
problem presented in Section IV-A, the above optimization
problem is also NP-hard, due to the complexity involved in
computation of all possible combinations of the candidate
switches and processing those for exact-match rule placement.
Consequently, we propose a greedy heuristic to select switches
in the selected paths, in order to place exact-match. As the
objective is to maximize flow visibility while considering rule-
capacity, we consider degree, deg(i), of a switch i ∈ S and its
utilized rule-capacity, Rutil

i . To consider a trade-off between
deg(i) and Rutil

i , we introduce a network visibility factor, λ,
defined in Definition 4. It is noteworthy that the value of λ
will impact on the selection of switches in which exact-match
is placed.

Definition 4. Network visibility factor: It is the desired
weight, λ, on the degree of a switch, deg(i), i ∈ S, to place
exact-match at switch i, where 0 < λ < 1 and λ ∈ R>0.

In a practical scenario, the switch with higher degree should
be prioritized to avoid congestion over a specific link, while
considering rule-space utilization of the switch. Consequently,
we consider an eligibility score, Ti(P), of a switch for exact-
match placement is calculated as follows:

Ti(P) = λ
deg(i)

∆(G)
− (1−λ)

Rutil
i

Rmax
i

,∀i ∈ S, and P ∈ P (10)

where ∆(G) denotes the maximum degree of the network.
Equation (10) ensures a trade-off between the degree and
rule-capacity utilization of a switch. The proposed heuristic
approach is presented in Algorithm 2 for flow-rule placement.

Algorithm 2 Flow-rule placement algorithm
Inputs: Set of degrees of all switches

Set of paths with flows < P,F >
Maximum rule-capacity of the switches Rmax

i ,∀i ∈ S
Set of utilized rule-capacity Rutil = {Rutil

i }, ∀i ∈ S
Output: Place flow-rules at switches to route incoming flows

1: k ← 1
2: while all paths Pk ∈ P are not assigned flow-rules do
3: get switch i ∈ Pk with max. score using Eqn. (10)
4: get exact-match at i for flow fk ∈ F
5: get default rules at switches j ∈ Pk \ i
6: place the exact-match and default rules
7: update Rutil

i ,∀i ∈ Pk . update rule utilization
8: k ← k + 1 . Rules for kth path is installed

C. Flow-rule Redistribution

In this section, we propose a two-stage rule redistribution
approach to accommodate more flows in the network – path-
and flow-based redistribution. In path-based redistribution,
rules associated with a flow are redistributed among the
switches in the existing path itself, without exploring a new

3Source (nw src) and destination (nw dst) are considered by default.

Fo
r p

ers
on

al
us

e o
nly

6

path. On the other hand, in flow-based redistribution, new
paths associated with existing flows are explored. Accordingly,
flow-rules are placed at the switches in the new paths until the
utilized rule-capacity of all switches has reached a predefined
threshold. The first-stage ensures minimum rule redistribu-
tion in the network, as only exact-match rules are required
to be distributed. If the first-stage fails, the second-stage
explores new paths and places flow-rules while considering
rule-dependency problem. The rule redistribution algorithm
runs periodically at the controller-end, and, accordingly, flow-
rules are updated at the switches in the network. Algorithm
3 presents the proposed rule redistribution scheme. In step

Algorithm 3 Flow-rule redistribution algorithm
Inputs: Set of paths with flows and exact-match switches

< P,F ,M >
Rule-congested switch v ∈ S

Output: Flow-rule placement at switches to route flows in the
network

1: F ← set of flows routed though S
2: P ← set of paths associated with F
3: flag ← 0 . used to check rule-utilization threshold

First stage: . redistribute using existing paths
4: for path p ∈ P do
5: for switch s ∈ p \ v do
6: if Rutil

s ≤ Rth and Mexact
p (v) ∧Mwild

p (v)
and fp(s) ∧ fp(v) then

7: place Mexact
p in s

8: delete Mexact
p from v

9: if Rutil
v ≤ Rth then

10: flag ← 1
Second stage: . update rules for new paths

11: if !flag then
12: for all flow f ∈ F do
13: get alternate path p

′
using Algorithm 1 (Steps 3–8)

14: get flow-rules for p
′

using Algorithm 2 (Steps 3–5)
15: for switch s ∈ reverse(p′

) do . reverse path for
consistent update

16: if ! OFPFF CHECK OVERFLAP then
17: place flow-rule at s

15, the rules are updated at the switches in a reverse order in
the path for consistent update [29]. Therefore, some fraction
of a flow is forwarded using old rule and some follows the
updated rule until all the switches in the path are updated.
Further, this ensures loop-free and connected network update.
Step 16 utilizes the rule-overlap utility of OpenFlow protocol
[30] during flow-rule installation. It is noteworthy that the
SDN controller periodically checks for rule-congestion at
the switches and redistributes the flow-rules using Algorithm
3. Further, the rule update mechanism is considered in the
proposed greedy heuristic approach to accommodate more
number of flows in the network. Figure 4 presents the proposed
controller architecture.

Fig. 4: Proposed SDN controller architecture

0
1

2

3

4

5

6

7

8
9

10
11

1213

14

15
16

17

1819

20 21
22

23
24

(a) AttMpls topology

0

1

2

3 4

5

6

7

8

9

10 1112

13

14
15

16

(b) Goodnet topology

Fig. 5: Network topologies considered in this work

D. Computational Complexity

We analyze the time complexity of the proposed scheme
in three phases — path selection (Algorithm 1), rule place-
ment (Algorithm 2), and rule redistribution (Algorithm 3). In
Algorithm 1, the most computationally expensive operation
is the calculation of k-shortest paths. We use Yen’s K-shortest
path algorithm [27], and it takes O(K×|S|(|E|+ |S|log|S|)).
Therefore, for |F| number of flows, Algorithm 1 takes O(|F|×
(K×|S|(|E|+|S|log|S|))) time. Further, Algorithm 2 involves
sorting of switches for |P| number of paths. Therefore, it runs
in O(|P| × |S|log|S|) time. Finally, in Algorithm 3 involves
two phases. The first phase runs in O(|P| × |S|), and the
second phase runs in O(|F| × |S|) time. Therefore, total
time complexity of the proposed scheme is O(|F| × (K ×
|S|(|E| + |S|log|S|))) + O(|P| × |S|log|S|) + O(|P| × |S|)
+ O(|F| × |S|) ≈ O(|F| × (K × |S|(|E|+ |S|log|S|))).

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed scheme, Flow-
Stat, using POX4 SDN controller and Mininet [31] network
emulator. Further, two real-life network topologies — AttMpls
and Goodnet — from the Internet topology Zoo [32] are
considered in this work. The AttMpls topology is relatively
dense compared to the Goodnet topology. Therefore, we
choose these two topologies to consider two different aspects
of network topology in a practical scenario. It is noteworthy
that other network topologies may also be considered to
validate the proposed scheme. However, due to high resource
requirement of the emulated environment, we choose a well-
balanced mixture of network topologies – AttMpls (large and
dense) and Goodnet (small and sparse). Figure 5 shows the
representational view of the two network topologies. Incoming
network traffic with different type of services is generated

4https://github.com/noxrepo/

Fo
r p

ers
on

al
us

e o
nly

7

TABLE II: Simulation Parameters

Parameter Value
Network Topology AttMpls and Goodnet [32]
Number of switches 25 (AttMpls) and 17 (Goodnet)
Number of links 57 (AttMpls) and 31 (Goodnet)
Number of flows 100 – 300
Flow bandwidth 0.20 – 0.40 kbps
Average packet size 94 – 699 bytes [35]
Active volume 142 – 27716 bytes [35]
Mean rate 562 – 516,540 bps [35]
Active time 1 – 34 s [35]
[σ, {α, β}, λ] [0.005, {0.0 – 1.0}, 0.5]

using D-ITG generator [33]. The experiment is conducted
in a Google Cloud5 instance with Intel Skylake CPU and
7.5GB RAM running Linux kernel 4.4.0-103-generic. Table
II presents the parameters and their values used in the ex-
periment. The presented results are taken as average of 10
independent runs. Additionally, 95% confidence interval is
used to show the variance of the results [34], i.e., in 95%
cases, we are confident that the obtained results lie between
the specified range. We also vary the values of the predefined
constants α and β to show their impact on the performance
of the proposed scheme.

We compare the proposed scheme, FlowStat, with existing
schemes — ReWiFlow [36] and ExactMatch. In case of
ReWiFlow, the flow-rules are placed at the switches based
on wildcard in which source and destination of an incoming
packet are considered. Rest of the fields are considered as do-
not-care. On the other hand, in case of ExactMatch, all match-
fields are considered for rule placement. In contrast to the
ReWiFlow and ExactMatch, the proposed scheme, FlowStat,
decides the flow-rules intelligently based on the Algorithms 1
and 2. Further, FlowStat redistributes the flow-rules based on
real-time situations. Henceforth, we use FlowStat to represent
the proposed scheme, and ReWiFlow and ExactMatch to
represent the existing schemes.

A. Performance Metrics
In this Section, we discuss the performance metrics used

to compare the performance of the proposed scheme with the
existing schemes.

1) Accuracy in per-flow statistics: We measure the accuracy
of per-flow statistics as the ratio between the number of unique
flows detected by SDN controller and the total number of
unique flows in the network.

2) Number of Packet-In: The number of Packet-In is mea-
sured as the number of Packet-In requests received by the
controller. This is used to show the control overhead in
the network. We use default header format for Packet-In as
specified in OpenFlow [37].

3) QoS violated flows: A flow is treated as QoS violated
flow when at-least one of its requirements – delay, loss or
bandwidth – is not fulfilled, while forwarding the flow from
source to destination. It is noteworthy that the number of QoS
violated flows depends on the forwarding path selection, rule
placement, and rule redistribution techniques.

5https://cloud.google.com/

 40

 60

 80

 100

100 150 200 250

P
er

-F
lo

w
 S

ta
ti

st
ic

s
(%

)

Number of Flows

AttMpls Topology

 40

 60

 80

 100

100 150 200 250

P
er

-F
lo

w
 S

ta
ti

st
ic

s
(%

)

Number of Flows

Goodnet Topology

FlowStat ReWiFlow ExactMatch

Fig. 6: Per-flow statistics with different number of flows

4) End-to-end delay: End-to-end delay is measured as the
total time taken to deliver a packet from source to destination.
This includes queuing, processing, transmission, and propaga-
tion delays.

5) Throughput: Throughput is calculated as the effective
bandwidth usage of the active links determined in the for-
warding path selection phase.

6) Packet drop: Packet drop is calculated as the ratio
between the number of lost packets and total number of
packets. We take percentage of the ratio to present the results.

It is noteworthy that we calculate end-to-end delay, through-
put, and packet drop using the utilities available in Mininet
network emulator.

B. Results and Discussion

In this section, we present the results obtained using the
schemes — FlowStat (Proposed), ReWiFlow, and ExactMatch
— using different performance metrics. The results are pre-
sented for AttMpls and Goodnet network topologies with
different number of flows in the network.

1) Accuracy in Per-Flow Statistics: The primary objec-
tive of the proposed scheme is to obtain per-flow statistics
while minimizing associated cost. As mentioned in Section
IV, FlowStat places the forwarding rules at the switches in
such a manner that per-flow statistics at the controller is
maximized. It is noteworthy that the SDN controller analyzes
the per-flow statistics using Packet-In messages only, so that
additional control overhead in flow-statistics collection is
avoided. Figure 6 presents the percentage of per-flow statis-
tics accurately analyzed at the SDN controller with different
schemes — FlowStat, ReWiFlow, ExactMatch. We see that the
proposed scheme, FlowStat, is capable of providing approxi-
mately 85% accurate per-flow statistics. In contrast, in case of
ReWiFlow, we get only 68% accuracy in per-flow statistics
collection. On the other hand, ExactMatch provides 100%
accuracy in per-flow statistics collection. This is due to the fact
that the SDN controller places exact-match rules on receiving
a new flow. Therefore, on receiving a new flow at a switch,
the latter generates Packet-In to the controller, which leads
to better accuracy in per-flow statistics. However, ExactMatch
provides degraded network performance which is discussed
in subsequent sections. It is also noteworthy that FlowStat
provides improved accuracy using AttMpls topology compared
to that of using Goodnet topology. Due to the relatively sparse
nature of the Goodnet topology, number of outgoing ports at
a switch is less compared to that of the AttMpls topology.

Fo
r p

ers
on

al
us

e o
nly

8

 0
 2000
 4000
 6000 α=0.5, β=0.5

AttMpls Topology

 0

 1000

 2000

 3000
α=0.5, β=0.5

Goodnet Topology

 0
 2000
 4000
 6000 α=1.0, β=0.0

N
u
m

b
er

 o
f

P
ac

k
et

-I
n

 0

 1000

 2000

 3000
α=1.0, β=0.0

N
u
m

b
er

 o
f

P
ac

k
et

-I
n

 0
 2000
 4000
 6000

100 150 200 250

α=0.0, β=1.0

Number of Flows

 0
 1000
 2000
 3000

100 150 200 250

α=0.0, β=1.0

Number of Flows

FlowStat ReWiFlow ExactMatch

Fig. 7: Number of Packet-In with different number of flows

Due to this reason, some of the new flows that are received
at a switch match with already placed wildcard rules, which,
in turn, minimizes the number of Packet-In at the controller.
However, using both the topologies, FlowStat yields improved
accuracy compared to ReWiFlow. Further, it can be seen that
accuracy in per-flow statistics decreases with an increase in the
number of flows in the network. This is due to the fact that
probability of flow-table hit increases with increased number
of flows in the network.

2) Number of Packet-in Message: As mentioned in Section
IV, we use Packet-In for collecting per-flow statistics. There-
fore, we also present the control overhead in per-flow statistics,
as depicted in Figure 7. We see that FlowStat is capable
of reducing the number of Packet-In by 40% compared to
ExactMatch, while incurring 16% more Packet-In compared to
ReWiFlow due to the wildcard-based rule placement strategy.
Although FlowStat leads to more Packet-In compared to
ReWiFlow, the former achieves improved accuracy in per-flow
statistics as shown in Figure 6. Consequently, from Figures 6
and 7, it is evident that the proposed scheme, FlowStat, yields
improved performance compared to the existing schemes
— ReWiFlow and ExactMatch. Further, it is noteworthy that
number of Packet-In remains the same for different values of
α and β as the former depends on the flow-rules installed at
the switches, as presented in Algorithm 2.

In the subsequent sections, we present the efficacy of the
proposed scheme in terms of network performance — QoS
violated flows, end-to-end delay, throughput, and packet drop.

3) QoS Violated Flows: In addition to per-flow statistics,
one of the other objectives of the proposed scheme is to
maintain QoS requirements of flows in the network. We
propose a greedy-heuristic approach to route the traffic, while
minimizing associated cost (refer to Section IV). As a re-
sult, there is no guarantee that all the traffic can be routed
through the network, while preserving the QoS requirements.
Consequently, we have some QoS-violated flows that are
routed through the network. Figure 8 shows the percentage of
QoS violation with different number of flows using AttMpls
and Goodnet network topologies. We see that the proposed
scheme is capable of fulfilling QoS requirements using both
the network topologies. In particular, the proposed scheme,
FlowStat, is capable of reducing the QoS violation by 85%

 0

 10

 20

 30
α=0.5, β=0.5

AttMpls Topology

 0
 10
 20
 30 α=0.5, β=0.5

Goodnet Topology

 0

 10

 20

 30
α=1.0, β=0.0

Q
o

S
 V

io
la

te
d
 F

lo
w

s
(%

)

 0
 10
 20
 30 α=1.0, β=0.0

Q
o

S
 V

io
la

te
d
 F

lo
w

s
(%

)

 0
 10
 20
 30

100 150 200 250

α=0.0, β=1.0

Number of Flows

 0
 10
 20
 30

100 150 200 250

α=0.0, β=1.0

Number of Flows

FlowStat ReWiFlow ExactMatch

Fig. 8: QoS violation with different number of flows

and 91% (with AttMpls) and 67% and 87% (with Goodnet)
compared to ReWiFlow and ExactMatch, respectively. In case
of ReWiFlow and ExactMatch, the SDN controller computes
the forwarding path using open shortest path first (OSPF)
principle. Consequently, the controller considers a forwarding
path as valid if network capacity is satisfied, which, in turn,
leads to QoS violation. On the other hand, FlowStat computes
a forwarding path while considering network capacity and QoS
requirements, which leads to less QoS violation. The QoS
violation is more using Goodnet network topology compared
to that of using AttMpls as possibility of having alternate end-
to-end path is less due to sparse nature of the former. However,
it is always better than the existing schemes — ReWiFlow
and ExactMatch. Further, it is observed that FlowStat yields
equivalent performance in terms of QoS violation when link
utilization is not considered while choosing a path. This leads
to more link congestion, which, in turn, increases the QoS
violation for the proposed scheme, FlowStat.

4) End-to-End Delay: Figure 9 presents the end-to-end
delay in packet delivery with different number of flows using
AttMpls and Goodnet network topologies, respectively. We see
that the proposed scheme, FlowStat, incurs less delay in packet
forwarding compared to the existing schemes — ReWiFlow
and ExactMatch. In particular, FlowStat is capable of reduc-
ing end-to-end delay approximately by 48% and 44% using
AttMpls and Goodnet topologies, respectively, compared to
ReWiFlow and ExactMatch. In FlowStat, the SDN controller
takes decision on forwarding path selection while considering
delay requirements of incoming flows. Further, FlowStat in-
telligently places the flow-rules at the switches, so that less
number of Packet-In is generated. This leads to less flow-
setup delay compared to ExactMatch. On the other hand, we
observe that a particular set of switches are congested in case
of ReWiFlow due to OSPF-based path selection mechanism,
which, in turn, leads to increased end-to-end delay. Another
interesting fact is that ExactMatch and ReWiFlow incur almost
the same end-to-end delay. In ExactMatch, incoming flows are
forwarded through multiple outgoing ports according to flow-
rule installed at the switches, which leads to less congestion
on a specific outgoing port. In contrast, a specific outgoing
port is congested due to wildcard-based rule placement. Con-
sequently, we get almost similar performance using ReWiFlow

Fo
r p

ers
on

al
us

e o
nly

9

 100
 350
 600
 850 α=0.5, β=0.5

AttMpls Topology

 100
 350
 600
 850 α=0.5, β=0.5

Goodnet Topology

 100

 400

 700 α=1.0, β=0.0

A
v

er
ag

e
D

el
ay

 (
m

s)

 100

 400

 700 α=1.0, β=0.0

A
v

er
ag

e
D

el
ay

 (
m

s)

 100

 400

 700

100 150 200 250

α=0.0, β=1.0

Number of Flows

 100

 400

 700

100 150 200 250

α=0.0, β=1.0

Number of Flows

FlowStat ReWiFlow ExactMatch

Fig. 9: End-to-end delay with different number of flows

 2

 5

 8 α=0.5, β=0.5

AttMpls Topology

 2

 5

 8 α=0.5, β=0.5

Goodnet Topology

 2

 5

 8 α=1.0, β=0.0

T
h

ro
u

g
h
p

u
t

(M
b

p
s)

 2

 5

 8 α=1.0, β=0.0

T
h

ro
u

g
h
p

u
t

(M
b

p
s)

 2
 5
 8

100 150 200 250

α=0.0, β=1.0

Number of Flows

 2
 5
 8

100 150 200 250

α=0.0, β=1.0

Number of Flows

FlowStat ReWiFlow ExactMatch

Fig. 10: Network throughput with different number of flows

and ExactMatch although the former generates less number of
Packet-In (refer to Figure 7). However, the proposed scheme,
FlowStat, always yields improved performance compared to
the existing schemes. Similar to QoS violation, end-to-end
delay also increases when link utilization is not considered
during forwarding path selection.

5) Throughput: We also computed the bandwidth utiliza-
tion with different number of flows using AttMpls and Good-
net topologies, as depicted in Figure 10. We see that the
proposed scheme, FlowStat, achieves 18% and 14% (with
AttMpls), 18% and 28% (with Goodnet) increased band-
width utilization compared to ReWiFlow and ExactMatch,
respectively. Further, we observe that the bandwidth utilization
increases with an increase in the number of flows in the
network as more number of flows are routed in the network
within the same time. However, some of the flows are dropped
with an increase in the number of flows (refer to Section
V-B6), which may lead to inefficient bandwidth utilization.

6) Packet Drop: Finally, we computed the percentage of
packet-drop with different number of flows using AttMpls
and Goodnet topologies. Figure 11 depicts the percentage of
packet-drop in the network with different number of flows. It
is evident that the proposed scheme is capable of reducing the
packet-drop in the network compared to the existing schemes
— ReWiFlow and ExactMatch. In case of ReWiFlow and
ExactMatch, more number of packets are dropped due to link

 0

 10

 20 α=0.5, β=0.5

AttMpls Topology

 0

 10

 20 α=0.5, β=0.5

Goodnet Topology

 0

 10

 20 α=1.0, β=0.0

A
v
er

ag
e

P
ac

k
et

 D
ro

p
 (

%
)

 0

 10

 20 α=1.0, β=0.0

A
v
er

ag
e

P
ac

k
et

 D
ro

p
 (

%
)

 0

 10

 20

100 150 200 250

α=0.0, β=1.0

Number of Flows

 0

 10

 20

100 150 200 250

α=0.0, β=1.0

Number of Flows

FlowStat ReWiFlow ExactMatch

Fig. 11: Packet drop with different number of flows

congestion and increased control overhead, respectively, as
discussed in Section V-B4. Further, we see that the percentage
of packet-drop increases with an increase in the number of
flows using FlowStat. However, it is always better than the
existing schemes. Further, we observe that the packet drop
increases using the proposed scheme when link congestion
is not considered. This leads to more packet congestion,
and eventually, more number of packets gets dropped. It
is noteworthy that we do not consider application layer re-
transmissions of the dropped packets in this work.

In summary, it is evident that the proposed scheme is
capable of enhancing the network performance in terms of
end-to-end delay, throughput, packet loss, and QoS violation
compared to the existing schemes, while providing improved
per-flow statistics with less controller overhead. Further, it is
also observed that the performance of the proposed scheme
is degraded when rule-space and link utilization are not
considered during path selection phase. However, it is always
better than the existing schemes.

VI. PRACTICAL APPLICATIONS

In this Section, we discuss two use-case scenarios in which
the proposed scheme can be beneficial to meet application-
specific QoS requirements.
• QoS-guaranteed health data delivery: In a health-care sys-
tem, major data is delay- and loss-sensitive. Therefore, the
data generated from different physio-logical sensors need to
delivered within the specified time-bound, while incurring
minimum loss. The proposed scheme is capable of achieving
such requirements by employing adequate data forwarding and
rule placement mechanism. Further, it is also evident from the
results that the proposed scheme is capable of minimizing end-
to-end delay, while minimizing packet-drop as well.
• Energy management in smart grid system: In smart grid,
customers send their energy consumption data to the service
provider in real-time through smart meter data management
system. According to the received energy consumption in-
formation, the service provider takes adequate decision for
reliable and cost-efficient energy management. Such real-time
energy management system requires efficient data delivery
with minimum delay. On the other hand, few other appli-
cations, such as billing and making business policy, require

Fo
r p

ers
on

al
us

e o
nly

10

guaranteed data delivery with minimum loss. The proposed
scheme is capable of addressing such issues present in a smart
grid system.

VII. CONCLUSION

In this paper, we proposed an adaptive flow-rule placement
scheme to collect per-flow statistics in the network, while con-
sidering associated overhead and network capacity constraints.
The proposed scheme consists of three phases — forwarding
path selection, rule placement, and rule redistribution. In the
first phase, we formulated a max-flow-min-cost optimization
problem for finding optimal routing paths, and proposed a
greedy heuristic approach to solve the problem. In the second
phase, we formulated an ILP to decide optimal flow-rules,
so that number of exact-match rules is minimized in the net-
work. Finally, we proposed a rule redistribution algorithm to
accommodate more number of flows in the network. Extensive
experimental results were presented to show the efficacy of the
proposed scheme.

In this work, we observed that some of the new incoming
flows match with already placed flow-rules, which, in turn,
do not generate Packet-In to the SDN controller. This leads
to inaccurate per-flow statistics. Therefore, we plan to address
this limitation as a future extension of this work. Further, we
also plan to validate the proposed scheme in a very large and
complex network topology as a future extension of the work.

REFERENCES

[1] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks,” IEEE Communications Surveys
& Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[2] A. Ksentini, M. Bagaa, and T. Taleb, “On Using SDN in 5G: The
Controller Placement Problem,” in Proc. of the IEEE GLOBECOM, Dec.
2016.

[3] L. G. Roberts, “A radical new router: the Internet is brokenlets fix it,”
IEEE Spectrum, July 2009.

[4] D. L. C. Dutra, M. Bagaa, T. Taleb, and K. Samdanis, “Ensuring End-
to-End QoS Based on Multi-Paths Routing Using SDN Technology,” in
Proc. of the IEEE GLOBECOM, 2017, pp. 1–6.

[5] R. A. Addad, D. Dutra, M. Bagaa, T. Taleb, H. Flinck, and M. Na-
mane, “Benchmarking the ONOS Intent interfaces to ease 5G service
management,” in Proc. of the IEEE GLOBECOM, Dec. 2018, pp. 1–6.

[6] R. A. Addad, T. Taleb, M. Bagaa, D. Dutra, and H. Flinck, “Towards
Modeling Cross-Domain Network Slices for 5G,” in Proc. of the IEEE
GLOBECOM, Dec. 2018.

[7] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, “On using
bargaining game for Optimal Placement of SDN controllers,” in Proc.
of the IEEE ICC, May 2016.

[8] M. Bagaa, T. Taleb, and A. Ksentini, “Service-Aware Network Function
Placement for Efficient Traffic Handling in Carrier Cloud,” in Proc. of
the IEEE WCNC, Apr. 2014.

[9] A. Laghrissi, T. Taleb, M. Bagaa, and H. Flinck, “Towards Edge Slicing:
VNF Placement Algorithms for a Dynamic & Realistic Edge Cloud
Environment,” in Proc. of the IEEE GLOBECOM, Dec. 2017, pp. 1–6.

[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. R. andScott Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” in ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, Apr. 2008, pp. 69–74.

[11] F. Giroire, J. Moulierac, and T. K. Phan, “Optimizing rule placement
in software-defined networks for energy-aware routing,” in Proc. of the
IEEE GLOBECOM, TX, USA, 2014.

[12] X.-N. Nguyen, D. Saucez, and C. B. andThierry Turletti, “Optimizing
rules placement in OpenFlow networks: trading routing for better
efficiency,” in Proc. of the ACM HotSDN, Illinois, USA, 2014, pp. 127–
132.

[13] H. Huang, S. Guo, P. Li, B. Ye, and I. Stojmenovic, “Joint Optimization
of Rule Placement and Traffic Engineering for QoS Provisioning in
Software Defined Network,” IEEE Transactions on Computers, vol. 64,
no. 12, pp. 3488–3499, 2015.

[14] M. Rifai, N. Huin, C. Caillouet, F. Giroire, J. Moulierac, D. L. Pacheco,
and G. Urvoy-Keller, “Minnie: An SDN world with few compressed
forwarding rules,” Computer Networks (Elsevier), vol. 121, pp. 185–
207, Jul. 2017.

[15] S. Bera, S. Misra, and M. S. Obaidat, “Mobi-Flow: Mobility-
Aware Adaptive Flow-Rule Placement in Software-Defined Access
Network,” IEEE Transactions on Mobile Computing, 2018, DOI:
10.1109/TMC.2018.2868932.

[16] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow:
Dependency-Aware Rule-Caching for Software-Defined Networks,” in
Proc. of the ACM SOSR, CA, USA, 2016.

[17] J.-F. Huang, G.-Y. Chang, C.-F. Wang, and C.-H. Lin, “Heterogeneous
Flow Table Distribution in Software-Defined Networks,” IEEE Trans.
on Emerging Topics in Computing, vol. 4, no. 2, pp. 252–261, 2016.

[18] X. Li and W. Xie, “CRAFT: A Cache Reduction Architecture for Flow
Tables in Software-Defined Networks,” in Proc. of the IEEE Symposium
on Computers and Communications, Heraklion, Greece, 2017.

[19] A. M. Kentis, A. Pilimon, J. Soler, M. S. Berger, and S. R. Ruepp, “A
Novel Algorithm for Flow-Rule Placement in SDN Switches,” in Proc.
of the IEEE NetSoft, Montreal, Canada, 2018.

[20] H. Li, S. Guo, C. Wu, and J. Li, “FDRC: Flow-driven rule caching
optimization in software defined networking,” in Proc. of the IEEE ICC,
London, UK, 2015.

[21] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “DevoFlow: scaling flow management for high-performance
networks,” in Proc. of the ACM SIGCOMM, Ontario, Canada, 2011.

[22] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “FlowCover: Low-cost flow
monitoring scheme in software defined networks,” in Proc. of the IEEE
GLOBECOM, TX, USA, 2014.

[23] A. Kamisinski and C. Fung, “FlowMon: Detecting Malicious Switches
in Software-Defined Networks,” in Proc. of the SafeConfig Workshop,
Colorado, USA, 2015.

[24] H. Xu, Z. Yu, C. Qian, X.-Y. Li, and Z. Liu, “Minimizing flow statistics
collection cost of SDN using wildcard requests,” in Proc. of the IEEE
INFOCOM, GA, USA, 2017.

[25] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[26] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting
multimedia applications,” IEEE Journal on Selected Areas in Commu-
nications, vol. 14, no. 7, pp. 1228–1234, 1996.

[27] J. Y. Yen, “Finding the K Shortest Loopless Paths in a Network,”
Management Science, vol. 17, no. 11, pp. 712–716, 1971.

[28] ONOS Documentation, Accessed on Oct 03, 2018. [Online]. Available:
https://wiki.onosproject.org/display/ONOS/ONOS+Documentation

[29] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in Proc. of the ACM SIGCOMM workshop on HotSDN, Hong Kong,
China, 2017, pp. 49–54.

[30] “OpenFlow Switch Specification,” Open Networking Foundation, Tech.
Rep., 2009, version 1.0.0.

[31] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-defined Networks,” in Proc. ACM SIGCOMM
Workshop Hot Topics in Networks, 2010, p. 19:119:6.

[32] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” IEEE Journal of Selected Areas in
Communications, vol. 29, no. 9, pp. 1765–1775, 2011.

[33] A. Botta, A. Dainotti, and A. Pescape, “A tool for the generation
of realistic network workload for emerging networking scenarios,”
Computer Networks (Elsevier), vol. 56, no. 15, pp. 3531–3547, 2012.

[34] A. Hackshaw, A Concise Guide to Clinical Trials. Oxford, UK: BMJ,
2009, ch. Statistical formulae for calculating some 95% confidence
intervals.

[35] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wije-
nayake, A. Vishwanath, and V. Sivaraman, “Characterizing and Classi-
fying IoT Traffic in Smart Cities and Campuses,” in Proc. of the IEEE
INFOCOM Workshop, 2017, pp. 559–564.

[36] S. Shirali-Shahreza and Y. Ganjali, “ReWiFlow: Restricted Wildcard
OpenFlow Rules,” ACM SIGCOMM Computer Communication Review,
vol. 45, no. 5, pp. 29–35, 2015.

[37] OpenFlow Switch Specification, Version 1.3.3, Open Networking Foun-
dation, Sept. 2013.

Fo
r p

ers
on

al
us

e o
nly

https://wiki.onosproject.org/display/ONOS/ONOS+Documentation

	Introduction
	Motivation
	Contribution

	Related Work
	System Model
	Prerequisites

	Proposed Rule Placement Scheme
	Forwarding Path Selection
	Rule Placement at Switches
	Flow-rule Redistribution
	Computational Complexity

	Performance Evaluation
	Performance Metrics
	Accuracy in per-flow statistics
	Number of Packet-In
	QoS violated flows
	End-to-end delay
	Throughput
	Packet drop

	Results and Discussion
	Accuracy in Per-Flow Statistics
	Number of Packet-in Message
	QoS Violated Flows
	End-to-End Delay
	Throughput
	Packet Drop

	Practical Applications
	Conclusion
	References

