QoS-aware Multipath Routing in Software-Defined
Networks

Priyanka Kamboj, Sujata Pal, Senior Member, IEEE, Samaresh Bera, Member, IEEE, and
Sudip Misra, Fellow, IEEE

Abstract—The emergence of new applications, such as on-
line gaming and virtual reality, necessitates the underlying
network capable of fulfilling high bandwidth and low latency
requirements. The software-defined multipath routing is a viable
approach to fulfill such quality-of-service (QoS) requirements by
improving the data delivery performance through multipath. In
this paper, we propose a QoS-aware dynamic multipath routing
scheme for enhancing QoS of high-bandwidth applications in an
SDN-enabled network. The proposed scheme consists of three
phases — flow splitting, multipath routing, and flow reordering.
In the first phase, we propose a flow splitting scheme to decide
how to split the incoming flows to enable multipath routing in
the network. In the second phase, we design a cost function for
routing the splittable subflows and formulate a min-cost routing
problem as an integer linear program (ILP). To solve the problem
in polynomial time, we propose a greedy heuristic approach.
Finally, in the third phase, we propose a flow reordering scheme
for the received subflows through multiple paths to maintain the
desired flow sequence at the destination. The experimental results
show that the proposed scheme achieves higher network through-
put by 22% compared to the benchmark schemes. Further, the
proposed scheme achieves a reduction in QoS violated flows by
24% compared to the benchmark schemes.

Index Terms—Multipath routing, Optimization, Quality-of-
service, Software-defined networking

I. INTRODUCTION

HE significant advancement of emerging applications,
such as online gaming, virtual reality, and vehicle-
to-everything (V2X), increased data traffic in the network.
The quality-of-service (QoS). requested by these applications
ranges from high bandwidth to low latency and high reliability.
Therefore, it becomes necessary to achieve a high packet
transmission rate with low packet drop and low latency for
end-user applications [1], [2]. However, the present Internet
architecture is.incapable of meeting such diverse and stringent
QoS requirements by these applications [3]-[5]. Software-
defined networking (SDN) is a novel technology that addresses
the limitations of the current Internet architecture through
simplified and flexible network management [6], [7].
SDN provides network abstraction by separating the con-
trol functions from the network devices. Thus, it provides a

P. Kamboj and S. Pal are with the Department of Computer Science and
Engineering, Indian Institute of Technology, Ropar, India, 140001. (E-mail:
prinkskamboj12 @gmail.com, sujata@iitrpr.ac.in).

S. Bera was with the Dept. of CSE, IIT Kharagpur, 721302, India when the
work was done. He is currently with the Department of ECE, IISc Bangalore,
India, 560012. (Email: s.bera.1989 @ieee.org).

S. Misra is with the Department of Computer Science and Engineer-
ing, Indian Institute of Technology, Kharagpur, India, 721302. (E-mail:
smisra@cse.iitkgp.ac.in).

global view of the network and yields an improved network
utilization [8], [9]. Further, the dynamic configuration of
QoS policies enables the SDN controller to make forwarding
decisions based on application-specific requirement [10], [11].

In this work, we focus on multipath routing in SDN-
enabled network to meet the high bandwidth requirements
of the emerging applications, as mentioned above. There
exists a few works that focus on multipath routing in SDN
[11]-[13]. Recent studies [12]-[19] explored the benefits of
multipath transport protocols and enhanced the performance
of network applications. While the existing works are useful
for multipath routing, they have the following limitations.
First, the packet scheduler distributes the data packets without
head-of-line blocking delays with transport layer multipath
routing [15]. Second, most works perform an uneven packet
distribution over multiple paths. As a result, the data packets
can reach out-of-order at the destination due to the uneven
distribution [20], [21]. However, the existing works do not
consider these issues while routing the data packets through
multipath. Consequently, it becomes necessary to address the
following questions for multipath routing of data packets —
a) how to split the flows through multiple paths, b) how to
forward the splittable flows, and ¢) how to reorder the out-of-
order packets received at the destination.

Fig. 1 illustrates the issues with multipath routing. Fig. la
presents that a single path routing fails to meet the bandwidth
requirements. Fig. 1b shows that the traffic flows are split and
routed through different paths using a routing algorithm to
meet the bandwidth requirements. The packets reach with out-
of-order sequences at the destination; therefore, subflows need
to be reordered at the destination node, as shown in Fig. lc.

In this paper, to address the issues mentioned above, we pro-
pose a QoS-aware multipath routing scheme in SDN-enabled
network. The proposed scheme consists of three phases —
splitting incoming flows, routing path selection, and reordering
received flows. In the first phase, we propose a flow-splitting
algorithm to split the incoming flows among multiple paths.
In the second phase, we formulate a min-cost integer linear
program (ILP) to route the splittable flows through multiple
paths. To solve the ILP in polynomial time, we propose a
greedy-heuristic approach. The split flows over multiple paths
may be received out-of-order at the destination. Consequently,
in the third phase, we propose a flow reordering scheme. In
brief, the significant contributions in this work are as follows:

e We propose a scheduling scheme to enable multipath

routing to improve QoS in SDN-enabled networks. The
proposed scheme splits and schedules the traffic flows

Path1 10 Mbps

Incoming Flow

e[5[4]3]2]1]

50 Mbps

Single path \% Path2 30 Mbps

routing
/ A Server
How to split j Path3 20 Mbp

not possible
the traffic flows?

Solution is
multipath routing

(a) A request with a data-rate requirements of 50 Mbps arrives

How to route
the sub flows?

Path 1 10 Mbps

Incoming Flow
fs[<f3[2l1]
50 Mbps

Path2 30 Mbps ﬁl

/ A nn Server
/ Path 3 20 Mbps

1) Algorithm for
[s]3]

splitting traffic

flows 2) Algorithm for
routing sub
flows

at switch A which needs to be routed to the server. The single (b) Request has been allocated a data-rate of 50 Mbps using

path routing fails as it cannot meet the required data-rate.

Path1 10 Mbps

Incoming Flow

el s[4]3[2]1] [2]

multipath routing

Out-of-order sequence
of packets

[2]6[s[4]3[1]

___> Subflows are not in order

A

Path 3 20 Mbps

6]3]

Path 2 30 Mbps =
~~.. How to reordexthe
.1

\ flows ?

Server 3) Algorithm for reordering

the sub flows

(c) Subflows through multiple paths arrived out-of-sequence;
packet reordering needs to be done.

Fig. 1: Illustrative example: a) single path routing fails to meet the data-rate requirements; b) flows are split and routed through
different paths to meet data-rate requirements; and c) the split flows received at the destination need reordering.

among multiple end-to-end disjoint paths while consider-
ing throughput requirements by the applications.

o We design a cost function for routing the split flows. We
formulate a min-cost routing problem as an integer linear
program (ILP) while considering associated constraints.
As the ILP turns out to be NP-hard, we propose a greedy-
heuristic approach to find the solution for the QoS routing
problem in SDN.

e We design a flow reordering scheme for the received
subflows through multiple paths to deal with out-of-order
packets at the destination.

o We evaluate the performance of the proposed scheme
using the Mininet network emulator and the Ryu SDN
controller. The proposed approach achieves higher net-
work throughput, lower delay, and lower QoS violated
flows than the state-of-the-art schemes.

We organize the rest of the paper as follows. In Section II,
we discuss the existing approaches to QoS-aware single path
routing in SDN and multipath routing. Section III presents the
prerequisites and system architecture. Section IV describes the
proposed QoS-aware multipath routing approach. Section V
discusses the experimental results. In Section VI, we highlight
the practical applications of the proposed scheme. Finally, in
Section VII, we conclude the paper while highlighting the
future research directions.

II. RELATED WORK

The researchers have proposed different schemes to enhance
QoS in SDN. In this section, we classify the related work from

three aspects — QoS management in SDN [22]-[25], resource
reservation using multipath approach [2], [26]-[28], and traffic
scheduling using multipath routing approach [1], [13], [15]-
[17], [29], [30]. In the following subsections, we discuss the
existing approaches.

A. QoS Management in SDN

Recent studies [22]-[25] had highlighted the traffic routing
schemes in SDN in terms of resource reservation and en-
hancing QoS. Egilmez et al. [22] proposed a QoS guaranteed
data delivery in multimedia applications. They proposed a
prioritization scheme to route the multimedia traffic flows in
SDN networks. The authors employed per-flow routing, and
the scope of their proposed method was limited to single-path
routing. Sharma et al. [23] introduced a QoS framework for
inter-domain routing where each domain was regulated using
an SDN controller to prioritize the business traffic over best-
effort traffic. The framework focused on assigning bandwidth
to the incoming request using a bandwidth broker. But, they
did not schedule the traffic flows onto multiple paths. Saha et
al. [24] presented an SDN-based routing solution to route the
heterogeneous traffic categorized as delay- and loss-sensitive
flows to meet application-specific QoS requirements. Further,
Kumar ef al. [25] introduced a framework to route high critical
flows having end-to-end delays and bandwidth requirements in
real-time systems. The framework isolates flows into different
queues for each traffic class to ensure QoS guaranteed traffic
forwarding.

B. Resource Reservation using Multipath Routing

In comparison with single-path routing, multipath routing
improves the network throughput. Yan er al. [26] introduced
the method that generates multiple paths and uses queuing
mechanisms to provide bandwidth guarantee and enhances
QoS to different traffic classes. Sahhaf et al. [27] proposed
an adaptive multipath provisioning method that uses a time-
slot-based approach to select multiple paths having maximum
bandwidth and availability. Huang er al. [2] introduced a
utility-based model in hybrid SDN for flow-level bandwidth
allocation over multiple paths. The authors in [28] had pro-
posed a new approach to route delay-sensitive traffic flows in
the network. Their approach performs network monitoring to
compute parameters such as delay and throughput to measure
QoS and presents a probabilistic-matching technique for traffic
distribution over multiple paths. Bagaa er al. [30] reduced the
operational expenditure costs and thus proposed a QoS-aware
multipath routing in SDN to allocate network resources.

C. Traffic Scheduling with Multipath Routing

To deal with bandwidth bottleneck in traffic forwarding on
a single path, the authors in [16] proposed a multipath routing
algorithm for load balancing in data centers. The controller
schedules the flows with dynamic link costs on the least
loaded paths. Jiawei et al. [1] introduced a priority-based
multipath routing algorithm for SDN networks. The algorithm
allocates network resources to maximize their utilization while
considering the flow priority of multimedia traffic. Tuncer et
al. [31] implemented a traffic split mechanism using the IP
addresses and uses Per-Flow multipath routing method.

Farrugia et al. [29] proposed a per-packet flow splitting
mechanism to handle unequal split ratios while' considering
scalability in the SDN network. The routing table in the
SDN switch includes the series of output port numbers with
their corresponding split ratios. The authors in [13] present
a multipath routing scheme to meet bandwidth requirements
of multimedia applications using segment routing in SDN
networks. The server assigns multiple disjoint routing paths
to real-time service flows by minimizing packet disordering
and reducing transmission latency to improve end-user quality
of experience (QoE). Wang et al. [32] proposed a network
virtualization scheme for multipath routing using SDN. The
scheme provides resources for flow splitting and performs tag-
based forwarding for packet reordering at the destination node.

Synthesis: Existing approaches do not provide the aggre-
gated capacity to meet the bandwidth requirements of traffic
flows. The detailed synthesis of the existing work suggests
that a research gap exists to minimize the routing cost in the
network. Further, the packet reordering at the destination is not
considered while routing the subflows. Therefore, scheduling
traffic flow onto multiple paths to enhance QoS for end-
user applications requires more attention. This work considers
end-to-end traffic scheduling in the SDN-enabled network
to propose a packet scheduling method, path selection, and
packet reordering in the network. We consider a single SDN
controller to control the end-to-end network in this work.
However, we can also use multiple controllers in a coordinated

manner to achieve this. We limit the discussion on using
multiple SDN controllers in this work as the primary objective
is traffic routing in the network.

TABLE I: List of notations

Notation | Description
V | Set of switches
L | Set of links
F | Set of flows
Fu, | Set of flows over a link (u,v) € £
f | A flow in the network
Fgpr | Set of splittable flows
Sg,ty Source and destination node
Py | Set of paths for flow f
by | Bandwidth requirement by a flow f
cu,n | Bandwidth capacity of a link (u,v) € £
cﬁff}l Link capacity utilization of a link (u,w)
du,» | Delay of a link (u,v) € £
di%® | Maximum tolerable delay on a link (u,v) € £
d’fn‘” Maximum delay tolerable by a flow f € F
T A binary variable represents whether path p is chosen for a
particular flow f

Cost of routing a flow f € F over a link (u,v) € £

Pl

I11. PREREQUISITES

We present the network in the form of a directed graph
GV, L), where) denotes the set of SDN switches, and £
indicates the set of links between the switches. Each link has a
bandwidth capacity c,, ., and delay d, , between nodes v and
v. The user requests are forwarded through the network. Let
there be a set of flows associated with different applications
denoted as F = {1,2,..., N}, where each flow has a band-
width requirement and delay-bound. Table I represents the key
notations that are used in the paper. The set of paths Py for a
flow f € F is described as:

Py ={p},p},..0}}, VfeF. 1)

In this work, we consider that all flows are splittable. A flow
is called splittable if it can be split into multiple subflows and
each subflow can be routed in the network from the source to
the destination independently.

Thus, the paths needed for a distinct flow has to satisfy the
following constraints:

Z 77?217 erFsph
pEPy

(2a)

where (2a) represents that the splittable flows can have more
than one path. Further, 71'? is the binary variable that represents
whether path p is chosen for a particular flow f.

Fig. 2 represents the SDN controller modules, where high-
lighted modules in blue color are proposed in this work.
The Packet-in Handler module captures the packet-in mes-
sages from the switches. The flow split manager module is
implemented at the source switch. This module takes the
input as packet-in messages from the Packet-in Handler.
Several methods have been proposed in the literature for traffic
splitting, such as packet-based, flow-level, and sub-flows-based
[15]. In the literature, the flow-based approach uses hashing
techniques, whereas packet-level is based on the Round Robin
(RR) approach [15], [28]. This work proposes a new flow

Packet-In Flow Split Path Routing Reordering
Handler [>| Manager [—>| Selector [>| Module [”|Mechanism
L 1
T(_)pology Ryu modules
Discovery Applications
Link Monitoring OpenFlow Ryu link discovery
discovery Module API

Fig. 2: Proposed system architecture

splitting mechanism that divides the traffic flow into numerous
flow units and is forwarded through different paths. We assume
that the flow split mechanism is executed at the sender side,
where traffic scheduling for paths is determined using the
packet scheduler.

The ingress (or incoming) switch performs the task of
flow splitting, whereas traffic aggregation takes place at the
egress (or outgoing) switch. The ingress switch receives the
packet and assigns a packet sequence number (PSN), flow ID,
and priority number. The PSN maintains the packet ordering,
whereas flow ID helps differentiate the traffic flow type. The
packet is routed on different paths and differentiated using
flow ID. The priority defines the packet forwarding order in
the network. The controller gives the flow request with a higher
priority preference than the lower priority traffic flows. Finally,
the egress switch removes the PSN, flow ID, and priority tag
from the packet upon its reception and forwards it to' the
destination node.

IV. PROPOSED MULTIPATH ROUTING IN SDN

Objective: Given the network with link capacity, delay, and
a set of flows with their bandwidth requirements and delay-
bounds. The objective is to route flows as many as possible
from source to destination through multiple paths. We pose this
problem by addressing the following questions — how to split
the flows among multiple paths, how to route the split flows,
and how to reorder the out-of-order flows at the destination.
We address these issues in the following sections.

A. Flow Splitting

The task of the scheduling algorithm is to assign each
flow unit to a different port based on the scheduling policy.
The scheduling algorithm adapts based on the varying traffic
flows in the network. We utilize the OpenFlow protocol
to implement flow-splitting using group tables that help to
forward decisions on several links [29].

We aim to maximize the performance of the network to
deliver end-user applications. The scheduler adapts to the
change in path characteristics based on the bandwidth and de-
lay of the link to utilize available capacity efficiently and avoid
overloading the congested path. To maximize the throughput
of end-user applications, we adopt a Weighted Round-Robin
scheduler (WRR) that distributes a stream of packets along
different paths [15]. The weight of traffic associated with

each path has been computed dynamically by the scheduling
algorithm as follows:

Cu,v

Wy o = WVieV, 3)
Z(u,v)éneigh(i) Cu,v

where w,,, represents the weight of the link (u,v), and
cu,v denotes the available bandwidth of the link (u,v). Fig. 3
shows an illustrative example of flow-splitting. The value on
the links represents the available bandwidths. The flow at
switch 1 splits according to the weight function presented in
(3). Algorithm 1 represents the flow splitting and probabilistic
matching. For probabilistic matching, the weight of each
bucket is limited between 1 to 100. Further, the sum of their
weights is equivalent to 100.

Consider an example with three paths in the network
topology to reach the destination node. The switch wants to
send 30% of the traffic packets on port 1, 15% over port 2, and
the rest 55% through port 3. We consider that are three buckets
with weights of 0.30, 0.15, and 0.55, as shown in Figure 3.
When a switch receives a flow, a random number is generated,
for instance, 0.40. Further, mapping is done with the bucket
weight as shown in Algorithm 1. The corresponding bucket
action is chosen to send packets to that port.

Bucket 1
w2 = 30/100
30 AV T
Bucket 2
w3 =15/100
1 Number 0.40 15 @
between 0 to 1 >
55 Bucket 3
Random number w4 =55/100
generator

Fig. 3: Illustration example to compute bucket weight

Algorithm 1 Flow Splitting and Probabilistic matching

1: Compute weights for each bucket and sort their weights
(using (3))

2: while matching of packet takes place do

Generates a random number n whose value lies be-

tween O to 1

4: Action is taken on performing a match of n with each
bucket weight

5: end while

B. Routing Path Selection

In Section IV-A, a flow is split into sub-flows, and each
subflow needs to be routed in the network. In this work, we fo-
cus on minimizing the routing cost associated with flows while
considering the associated constraints. Therefore, the objective
is to maximize the number of flows to be forwarded through
the network while considering the constraints. Consequently,
we design the cost function consisting of delay and bandwidth
requirements of flows and available networking resources. The
cost function ®,, ,, determines the cost of link (u, v) as follows:

max
du,v

D, = +(1-a)

Cu,v

where d, ., ¢y, represents delay and available bandwidth
of a link (u,v). Further, dj¢* denotes the maximum delay
tolerable and cﬁfﬁ represents link capacity utilization of a link
(u,v). The parameter « is designed to consider the impact of
link capacity and delay on the cost function.

Optimization problem: The centralized controller knows
the entire network state and computes the forwarding table
to route the data from one switch (node) to another switch.
The controller updates the forwarding table and stores it on
the network switches in case of any failure. Once the flows
are split across multiple paths, the controller determines the
forwarding path for each subflows. Mathematically,

min Z Z fuw Puw, Y(u,v) €L (5a)
fEF (u,w)eL
1 u = sg,
s.t. Z fu,v Z fv,u = 0 Vu 7é Sf,tf,
u:(u,v)EL u:(v,u)EL -1 uw = tf
(5b)
fuw b < cCuw, Y(u,v)eL (5¢)
Z dp(u,v) fuw < AP (u,0), Y(u,v) €L (5d)
(u,v)€Py
fuw € {0,1}. (5e)

Equation (5b) states the flow conservation constraints. Equa-
tion (5c) represents that the traffic flows on a link should
not exceed the link capacity. Equation (5d) denotes the delay
constraints, where dy'*" represents the delay-bound of a flow
f € F. Equation (5e) states the binary variable on whether
link (u,v) € L is selected to route flow- f. The optimization
problem is NP-hard. We limit the discussion on the NP-hard
problem as it is well-examined in the existing literature [17].
We design a greedy heuristic-based solution to compute the
optimal routing paths as follows:

Algorithm 2 is the Multiple Routing Path (MRP) algorithm
that augments the traffic flows on the path computed using
the Bandwidth_allocation algorithm presented in Algorithm
3. Algorithm 3 calculates the shortest routing paths to the
user by satisfying the QoS demand while ensuring end-to-
end QoS. The MRP algorithm considers a set of flow requests
represented by F. The MRP algorithm calls the Bandwidth_-
allocation algorithm to process each user request in Step 4.

In the MRP algorithm, we use the K-shortest path algorithm
[33] to compute the disjoint routes in the network topology.
We sort the paths based on the cost function calculated in
(4). We select the least cost routing path for traffic flows in
the network using (5a). Since the proposed approach assigns a
lower cost to the links with higher bandwidth, which facilitates
the selection of the least loaded links, thus, we can say that
congestion control is inbuilt into the network.

The VERIFY_QOS function in the Bandwidth_allocation
algorithm checks the bandwidth requirements of the user’s
request and prefers the best-path to route traffic flows. The

Bandwidth_allocation algorithm returns the “best-path” to the
MRP algorithm. The MRP algorithm augments the traffic
flows on the best-path. Further, after augmenting traffic flows,
the residual link capacity of the path and residual graph are
updated, as presented in Steps 7-16 in Algorithm 2.

We used cvxpy [34] to solve the ILP. Fig. 4 shows a
comparison between the proposed greedy approach and the
ILP solution in a scale-free Barabasi-Albert network topology
[35]. In the network, we consider 10 nodes with average degree
as 2. The details of the delay and bandwidth parameters of the
network and flows are mentioned in the simulation settings in
Section V. It is evident that the proposed greedy approach
yields competitive performance to the optimal solution in
terms of QoS violation, while requiring very less computation
time.

ILP 5 Greed ILP <3 Greedy
T T T T T

w
S

100
~ 7
g 5 ‘& 7
Z 10 5% 1o Q
by & s S
2 %] o =~ 20
£ B K =
£ P K g
= i o k- -
= 6 K g B
1F K4 2ol ~ 15 [
S & K S K
-1 K] S pid
g & 5 z 5
] & B @ 10t oo
& 3% el o %!
£ o1 & K S s
S K K K
o B £ 5 1o
&3, s
. s) o 7

e iz
40 50 60 70 40 50 60 7
Number of Flows

(b) QoS Violation

o

Number of Flows

(a) Computation Time

Fig. 4: Comparison between ILP and proposed scheme

Algorithm 2 Multiple Routing Paths (MRP)

Input : Graph G, by > User-defined > by represents
bandwidth demand of user request

Output : Flow_request is fulfilled or not

I k=1,flag=0

2: F = Set of flows

3: while f; € F not been forwarded do

4: arr(flag, best-path) = Bandwidth_Allocation (flow_-
request, by, G); > Using Algorithm 3

5 if (flag == 1) & best-path then

6: Augment the traffic flow on path

7: else

8 No QoS path not found

9 end if

10: UPDATE_LINK_CAPACITY (best-path, by)
11: k+—k+1

12: end while

13: function UPDATE_LINK_CAPACITY(P, by)

14: for (u,v) in P do

15: Cup = Cyyp - bf > Capacity is reduced by
bandwidth demand of flow

16: end for

17: return request_status;

18: end function

Algorithm 3 Bandwidth_Allocation

Input : Graph G, source sy, destination dy, cy v, by >
User-defined > b/ represents bandwidth demand of user
request

Output : Path P on which flow_requests F are routed

1: for P in K-shortest-path (s¢, t¢) do

2 Sort the paths using cost function computed in (4)
3 if VERIFY_QOS (P, by) then

4 flag =1

5: best-path = P

6 return (flag, best-path);

7 end if

8: end for

9: function VERIFY_QOS(P, by)

10. for (u,v)in P do > QoS satisfied
11: if ¢, , > by then

12: return True

13: else

14: return False

15: end if

16: end for

17: end function

Algorithm 4 Flow Detection and Recovery

Input : Set of flows F, PSN, Flow Id
Output : Flows are recovered based on Flow Id and PSN

1: while destination node receives flows do

2: send them to buffer corresponding to flow

3: end while

4: while there is out-of-order packets do

5: Compute my = RI - AS;

6: if |mg4| = 0 then

7: No packet reordering;

8: else

9: if |mg| > 0 && |my| < 2 then

10: FLOW_RECOVERY(Flow Id, PSN);

11 else

12: Packet is considered to be lost;

13: end if

14: end if

15: end while

16: function FLOW_RECOVERY(Flow Id, PSN)

17: while flow recovery checks PSN of flows do

18: Perform packet reordering by sorting flows by PSN
and Flow Id;

19: end while

20: end function

C. Reordering out-of-order Flows

The issue of packet ordering at the destination arises from
the traffic routing on multiple paths. Thus, we design and
implement the flow recovery and packet reordering mechanism
at the destination node to reduce its impact on the perfor-
mance. Let the packet sequence number (PSN) to the packets
is assigned as {1,2,...,N}. We introduce a resequencing
buffer at the destination node for each flow. We assumed the

6

arrived sequence (AS) number to the incoming packets as
{1,2, ..., M}. Further, the destination node assigns a received
index (RI) to each packet upon its reception as {1,2,...,S}.

Algorithm 4 checks the early or late arrival of the packet.
We compute a mean displacement (1m4) at the destination node
as the difference between the AS and RI. If my = O then no
ordering of packets are required. The value of my > 0 and my
< 2 indicates the late arrival and early arrival of the packet
respectively. We consider a threshold value as 2 (mg > 2) for
the lost packets in the network. We assume that if a packet
AS does not receive up to the third consecutive sequence
number, thus packet is considered lost. The algorithm invokes
a FLOW_RECOVERY function to perform packet reordering.
This function checks the PSN of the flows and sorts the flows
at the destination node based on the PSN and the flow ID, as
explained in the flow split manager.

D. Running Time Complexity

We analyze the worst-case time complexity of the
proposed approach — flow splitting and probabilistic matching
(Algorithm 1), routing path selection (Algorithm 2, Algorithm
3), and flow detection and recovery (Algorithm 4). Algorithm
1 involves sorting the bucket weights. Therefore, it takes the
execution time as O(|b|), where b is the number of buckets.
In Algorithm 2, for each flow request f € F, the while loop
makes a call to the Algorithm 3 in Step 6. Algorithm 2 for
each incoming request makes a call to Bandwidth_Allocation
function. In Algorithm 3, the shortest paths computed
using the K-shortest path algorithm are the most expensive
operation. The running time of computing K-shortest paths is
O (kV|(IL] + |V|log|V])). Since Algorithm 2 invokes the
Algorithm 3 for |F| number of flow requests, the Algorithm
2 runs in O (|F|(k|V|(|£]+ [V|log|V]))). Finally, in
Algorithm 4, the while loop performs sorting of flows by
Flow Id. Therefore, it runs in O(|F|? + | F|) time, where |F|
is the number of flows. So, the total time complexity of the
proposed scheme is O (|F| (k|V|(|£| + |V|1log|V]))
+ OkVI(L+VogV]) + O(F? + |F) =
0 (|7| (k VI(I£] + [V]og[V]))).

V. PERFORMANCE EVALUATION
A. Simulation Settings

We evaluate the performance of the proposed method using
Mininet [36] network emulator and Ryu1 SDN controller. A
Mininet emulator is used for modeling a virtual network to
perform the simulation environment. The work experiments
have been performed using the HP-ProDesk i7 CPU, 3.62 GHz
processors, and 8 GB RAM. The OpenFlow 1.3.1 protocol is
used in OpenFlow switches to route the traffic flows in the
network. The OpenFlow switches are used to set up multiple
paths, and bandwidth is controlled with the help of their meter
function. We used the Iperf tool’> and Distributed Internet
Traffic generator (D-ITG) [37] to model the flow requests in

Uhttps://ryu-sdn.org/
Zhttp://software.es.net/iperf/

TABLE II: Simulation Settings

Value

AttMpls, Goodnet

25 (AttMpls), 17 (Goodnet)
57 (AttMpls), 31 (Goodnet)
50 - 250

0.30 - 0.60 Kbps

94 - 699 bytes [38]

562 — 516,540 bps [38]
1-50s

Parameter
Topology

Number of switches
Number of links
Number of flows
Flow bandwidth
Average packet size
Mean rate

Active time

the network. We adopted the method of uniform distribution
to generate packets for the experiment.

To conduct the simulation, we examine two network topolo-
gies — AttMpls and Goodnet from the Internet topology zoo
[35]. The AttMpls topology and Goodnet topology consist of
25 switches and 17 switches, respectively, as depicted in Fig. 5.
Circles represent the switches in the network topology, and
they are named O, 1, 2, and 3. AttMpls topology is large and
denser than Goodnet topology. Moreover, the number of nodes,
links, and the incoming degree of topology depicts the reason
for choosing these topologies to be a favorable candidate for
the experimental analysis of the proposed scheme. Table II
represents the simulation parameters used in the experimental
work.

(a) AttMpls Topology (b) Goodnet Topology

Fig. 5: Network topologies used in experiment

B. Benchmark Schemes

We compare the proposed approach with the following
benchmark schemes: Multi-path SDN (MPSDN) proposed
in [15], priority-based dynamic multi-path routing (PDMR)
proposed in [1], and Multi Constraint Optimal Path (MCOP)
architecture presented in [39]. The MPSDN scheme proposed
the architecture to schedule and reorder traffic on multiple
heterogeneous paths. The scheme uses Dijkstra’s algorithm
with a minimum priority queue to discover the routing path for
traffic flows. The PDMR scheme allocates network resources
to a set of flows according to traffic flow requirements and
finds the routing path using the cost function for different
traffic classes. The MCOP scheme selects the multiple optimal
paths to forward the packets while considering the QoS
requirements of traffic flows.

On the contrary, the proposed approach evaluates appli-
cation performance and routes traffic requests (or flows) on
routing paths computed using the K-Shortest Path algorithm.
The algorithm schedules the traffic flow into multiple paths. It
also proposes a flow recovery mechanism to solve the packet

reordering problem due to the difference in delay in multiple
paths.

C. Performance Metrics

We examine the below metrics in work to estimate the
performance of the proposed approach.

o Throughput:- It is computed by the bandwidth utilization

of links that are active while forwarding the traffic flows.

e QoS Violated Flows:- A flow is considered a QoS violated

flow if it does not fulfill atleast one of the requirements —
link capacity, end-to-end delay, and packet loss while for-
warding the traffic flows in the network. In the proposed
scheme, QoS violated flows depend on the link capacity
utilization and path selection while routing the subflows.
o Packet Loss:- The packet loss (or drop) in the network is
calculated by the proportion of packets lost to the total
packets sent in the network topology.

e End-to-End Delay:- We computed the average end-to-end

delay experienced by traffic flows in the network.

The throughput, packet loss, and end-to-end delay are
measured by the utilities available at the Mininet. Whereas we
measure the QoS violation at the Ryu controller considering
application-specific requirements.

D. Results and Discussion

This section presents the simulation results obtained in two
network topologies — AttMpls and Goodnet with different
flow requests. To evaluate the performance of the obtained
results, we compare the proposed approach with the mentioned
benchmark schemes in terms of network throughput, end-to-
end delay, rejection rate, and packet loss. The average of
different metrics of the simulation results has been taken for
an iteration of 20 runs to compute the value of each parameter.
Additionally, we computed the variance of the results at the
95% confidence intervals.

Proposed =& MPSDN =3
MCOP 1 PDMR
T T T T T

Proposed &z MPSDN =
MCOP 1 PDMR 1
T T T

14 T T

=

aVaVaVaVaVaVa VA VI YiSs

777777772777 7FR

Average Throughput (Mbps)

Average Throughput (Mbps)
N®ooInpo e
YaYeY

V2777777777

200 250
Number of Flows

00
Number of Flows

(a) AttMpls Topology (b) Goodnet Topology

Fig. 6: Average throughput in the network with increasing
number of flows

1) Throughput: Fig. 6 shows the improvement in average
throughout as compared to the existing schemes. The average
throughput of all the schemes increases with the rise in the
number of flows. Notably, the proposed multipath routing
approach demonstrates better performance than benchmark
methods in average throughput with the surge in flows. In
particular, the proposed scheme achieves a higher network

throughput by 7%, 18%, 27% (with AttMpls topology) and
6%, 16%, 25% (with Goodnet topology) as compared to
MCOP, MPSDN, and PDMR schemes, respectively.

In particular, in Fig. 6, we observe that the PDMR scheme
attains the lowest throughput as compared to other schemes
in both AttMpls and Goodnet topology. The reason for this
is that this method does not consider link utilization. PDMR
allocates network resources using the link cost function and
uses a technique to aggregate bandwidth resources to optimize
link weights. Further, we observe that AttMpls topology attains
higher average throughput than Goodnet topology because it
is larger and denser than Goodnet. Therefore more paths are
available to meet the bandwidth demand of user requests.
However, the MPSDN scheme attains higher throughput than
PDMR. This scheme uses an estimated available bandwidth
between the nodes to maximize the overall throughput. The
MCOP scheme achieves higher throughput than MPSDN and
PDMR schemes. The scheme uses most of the available band-
width on the link, resulting in increased throughput. On the
other hand, the proposed multipath routing approach performs
better than benchmark methods in average throughput in both
network topologies. The proposed approach considers link
capacity and forwards the traffic flows on available maximum
residual capacity paths. The scheduler schedules the traffic
flows on multiple paths to meet the bandwidth demand of the
user requests. Thus, the proposed scheme satisfies the QoS
requirements and is scalable to large flows.

Proposed =& MPSDN =3 Proposed & MPSDN =1
15 MCOP 1 PDMR 16 MCOP 1 PDMR =1
T T T T T T T T T \‘}
g “r - <N
2 13 1 o 14 J
g ERERS 1
S qob 4 2
= = 1ot B
guf 1 3
g Rl :
© 10 1 S
8 S 10} 1
s ol | s
%] v 9 & 1
o) o
S 8r 1 O sp &N ,
- 7 LB | BN [N |
150 200 250 50 100 150 200 250

Number of Flows

Number of Flows

(a) AttMpls Topology (b) Goodnet Topology

Fig. 7: Impact of the QoS violated flows in the network with
increasing number of flows

2) QoS Violated Flows: Fig. 7 depicts the performance of
the proposed multipath routing scheme that has been achieved
in comparison to the existing schemes. We notice that with the
risein the flows in the network, the proposed approach shows
better performance than benchmark methods in QoS violated
flows: In particular, with 250 flows, the proposed scheme
reduces QoS violated flows by 7%, 12%, 22% (with AttMpls
topology) and 9%, 14%, 26% (with Goodnet topology) as
compared to MCOP, MPSDN, and PDMR benchmark methods
respectively.

From Fig. 7, we notice that the PDMR scheme has the
lowest performance and has a higher QoS violated flows with
the increase in the number of flows in both AttMpls and
Goodnet topologies. The reason is that the PDMR scheme
allocates network resources using the link cost function for
different user requests and does not consider link utilization.

Due to this, the resources of the links are exhausted rapidly,
leading to more QoS violated flows. However, the PDMR
scheme’s capacity to perform load balancing is limited because
the link cost function only considers metrics jitter and packet
loss on each path. Moreover, in the Goodnet topology, the QoS
violated flows are higher than in the AttMpls topology. As the
Goodnet topology is sparser than AttMpls, thus it has fewer
alternative paths to route the traffic flows. On the contrary,
the MPSDN scheme performs better than the PDMR scheme.
It computes a forwarding table to send data between nodes
by maximizing capacity usage based on the maximum flow
problem. Further, the MCOP scheme gives better results than
PDMR and MPSDN schemes. The scheme selects the path
with the largest bandwidth by calculating the weight on that
path, which results in fewer QoS/ violations. However, the
proposed approach performs better than the existing schemes
in both network topologies. The proposed method considers
the residual capacity of the links and allocates the best QoS
path that satisfies the bandwidth requirements of user requests.
If the proposed method does not consider capacity utilization,
it leads to more link congestion and QoS violated flows.

Proposed & MPSDN =
MCOP a PDMR
T T T T T

0.7 . MC?P x1 . ?DMR FI

0.65 -
06
0.55
05
0.45
0.4
0.35
03

: 0.25
50 100 150 200 250 50 100 150 200 250

Number of Flows Number of Flows

0.6
0.55

=}
2
[

0.35

Average Packet Loss (%)
o =3
w S

Average Packet Loss (%)

0.25
0.2

(a) AttMpls Topology (b) Goodnet Topology

Fig. 8: Packet loss in the network with increasing number of
flows

3) Packet Loss: We estimated the percentile of packet loss
of different traffic flows by a varying number of flows of
AttMpls and Goodnet topologies. Fig. 8 illustrates the packet
loss with a varying number of flows. It is observed that the
proposed scheme reduces the packet loss compared to the
benchmark schemes — MCOP, MPSDN, and PDMR. From
Fig. 8, we can see that PDMR has the lowest performance,
and a large percentage of packets are lost with a rise in flows
in both AttMpls and Goodnet topologies. The PDMR scheme
results in link congestion and further leads to packet drop in
the network.

On the contrary, the packet loss percentage in the MPSDN
scheme is lesser than in the PDMR scheme, as the scheduler
sends the amount of data into multiple paths by accounting
for congestion in the network. Therefore it results in less
percentage of the packet drop. In Goodnet topology, the packet
drop percentage is higher than the AttMpls topology as the out-
going degree of the number of nodes and the links is lesser
than AttMpls, leading to network congestion. However, the
MCOP scheme performs better than the PDMR and MPSDN
schemes by showing a reduction in the percentile of packet
loss. The scheme efficiently utilizes the network resources

while optimizing the link weights. On the other hand, the
proposed scheme performs better than benchmark schemes
because the scheduler schedules the traffic flows onto multiple
paths by considering the link utilization in the network. It
avoids overloading the congested paths and thus results in less
percentile of packet drop.

Proposed =2 MPSDN = Proposed &z MPSDN =3
MCOP =a PDMR CJ MCOP =a PDMR 1
1.4 T T T T T 1.3 T T T T T
— 4 ~ 12 9
2)
g | B 1
oy | B 1t i
S S 09t g
ot 1 =} i
= 8l (4 1
@] a0 N
] g 07F ::& B
T 4 ! !
; 2 oo N
)] & N
o5 EN N]
0.4 a 1)
50 100 150 200 250 50 100 150 200 250

Number of Flows Number of Flows

(a) AttMpls Topology (b) Goodnet Topology

Fig. 9: End-to-end delay in
number of flows

the network with increasing

4) End-to-End Delay: Fig. 9 depicts the average delay
in routing the traffic with the increasing flows using two
network topologies — AttMpls and Goodnet. The proposed
approach results in a minor delay in routing traffic flows
than benchmark schemes — MCOP, MPSDN, and PDMR. In
particular, the proposed method reduces end-to-end delay by
10%, 18%, 36% (with AttMpls topology) and 15%, 21%, 46%
(with Goodnet topology) as compared to MCOP, MPSDN, and
PDMR schemes, respectively.

From Fig. 9, we observe that the PDMR experiences the
lowest reduction in delay with the rise in the number of flows
in both AttMpls and Goodnet topology. The link capacity
has exceeded, and the scheme does not meet the dynamic
requirements of traffic flows. However, the MPSDN scheme
suffers from fewer fluctuations and incurs a decline in delay
compared to the PDMR method as the scheduler adapts to
changes with path characteristics by considering delay and
congestion. On the contrary, the MCOP scheme shows a
reduction in delay compared to MPSDN and PDMR methods.
The scheme uses most of the available bandwidth and avoids
load imbalance, resulting in a decrease in end-to-end delay.
However, the proposed scheme significantly reduces end-to-
end delay compared to existing methods. In the proposed
scheme, the controller classifies traffic flows based on their
priority, and then the multipath scheduler sends the traffic
flows over different paths without overloading the congested
route. It directly depends on the smaller percentage of flows
that share the path, resulting in less link congestion. Thus,
the proposed scheme satisfies the QoS requirements with
increased flows.

VI. PRACTICAL APPLICATIONS

This section presents some of use-case scenarios, where the
proposed scheme can be used to fulfill application-specific
QoS requirements.

e 5G networks: The emerging applications in 5G are

broadly categorized into three aspects — enhanced mo-

bile broadband (eMBB), ultra-reliable and low-latency
communications (uURLLC), and massive machine-type
communications (mMTC) [40]. The emerging eMBB
applications, such as virtual reality and online gaming,
have high bandwidth requirements of up to 1 Gbps.
The proposed scheme is beneficial to support such high
bandwidth requirements using the multipath routing while
considering their delay requirements.

e IoT networks: With the increasing number of IoT applica-
tions, the heterogeneity of such applications in terms of
QoS requirements is also increasing. Consequently, the
network administrators need to consider each applica-
tion’s QoS requirements while routing the data packets in
the network. The proposed scheme can be used to meet
the diverse QoS requirements of IoT applications.

VII. CONCLUSIONS

In this work, we proposed-a flow scheduling scheme us-
ing multipath technology to balance the network traffic and
provide better QoS to the end-users. The main aim is to
use the aggregated capacity of multiple paths to transfer data
between end-points and provide higher network throughput.
SDN takes advantage of a centralized controller that considers
the link load to forward the traffic flows and reduce network
congestion. The controller uses the K-shortest path algorithm
to find the best routing paths for traffic flow. We leverage
SDN' architecture to implement packet scheduling, packet
reordering, and path selection to transfer the high volume of
data from end-user applications onto multiple paths. Further,
we aim to minimize the cost of routing traffic flows in the
SDN network. The simulation results have been presented to
reflect the effectiveness of the proposed approach to optimize
the network throughput, end-to-end delay, and QoS violated
flows. In particular, with 250 flows, the proposed approach
achieves higher network throughput 7%, 18%, 27% (with
AttMpls topology) and 9%, 16%, 25% (with Goodnet topol-
ogy) as compared to MCOP, MPSDN, and PDMR benchmark
schemes, respectively.

In this work, we noticed the flow-rule congestion problem
in the presence of large number of applications with diverse
QoS requirements. We plan to explore the adaptive flow-
rule placement scheme in the presence of large number of
applications while considering the limited TCAM available
at the SDN switches. Furthermore, the proposed scheme
considers the high bandwidth requirements of eMBB appli-
cations. However, considering the emerging 5G applications
with diverse performance requirements, we plan to include
uRLLC and mMTC applications as other use-case scenarios.

REFERENCES

[11 W. Jiawei, Q. Xiuquan, and J. Chen, “PDMR: Priority-based dynamic
multi-path routing algorithm for a software defined network,” IET
Commun., vol. 13, no. 2, pp. 179-185, 2018.

[2] X. Huang, T. Yuan, and M. Ma, “Utility-optimized flow-level bandwidth
allocation in hybrid SDNs,” IEEE Access, vol. 6, pp. 20279-20290,
2018.

[3] P. Kamboj and S. Pal, “QoS in software defined IoT network using
blockchain based smart contract,” in Proc. Embedded Networked Sensor
Syst., New York, USA, Nov. 2019, pp. 430-431.

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

R. H. Jhaveri, S. V. Ramani, G. Srivastava, T. R. Gadekallu, and
V. Aggarwal, “Fault-resilience for bandwidth management in industrial
software-defined networks,” IEEE Trans. on Netw. Sci. and Eng., vol. 8,
no. 4, pp. 3129-3139, 2021.

V. Balasubramanian, M. Aloqaily, and M. Reisslein, “An SDN archi-
tecture for time sensitive industrial I0T,” Comput. Netw., vol. 186, p.
107739, 2021.

M. Pizzutti and A. E. Schaeffer-Filho, “Adaptive multipath routing based
on hybrid data and control plane operation,” in Proc. IEEE INFOCOM,
Paris, France, April 2019, pp. 730-738.

P. Kamboj, S. Pal, and A. Mehra, “A QoS-aware routing based on
bandwidth management in software-defined IoT network,” in Proc.
MASS, Denver, USA, Oct. 2021, pp. 579-584.

P. Kamboj and S. Pal, “A policy based framework for quality of service
management in software defined networks,” Telecommun. Syst., vol. 78,
no. 3, pp. 331-349, 2021.

A. Jha, K. K. Singh, K. V. Devi, and V. Manjula, “Reinforcement
learning based weighted multipath routing for datacenter networks,”
Mater. Today: Proc., 2021.

P. Kamboj and S. Pal, “Software-defined networking in data centers,” in
Software Defined Internet of Everything. Springer, 2022, pp. 177-203.
A. A. Barakabitze, L. Sun, I.-H. Mkwawa, and E. Ifeachor, “A novel
QoE-centric SDN-based multipath routing approach for multimedia
services over 5G networks,” in Proc. IEEE ICC, Kansas City, USA,
May 2018, pp. 1-7.

K. Gao, C. Xu, X. Ji, J. Qin, S. Yang, L. Zhong, and D. Wu, “Freshness-
aware age optimization for multipath TCP Over Software Defined
Networks,” IEEE Trans. on Netw. Sci. and Eng., pp. 1-1, 2021.

W. Zhang, W. Lei, and S. Zhang, “A multipath transport scheme for
real-time multimedia services based on software-defined networking and
segment routing,” IEEE Access, vol. 8, pp. 93962-93 977, 2020.

F. Naeem, G. Srivastava, and M. Tariq, “A software defined network
based fuzzy normalized neural adaptive multipath congestion control
for the internet of things,” IEEE Trans. on Netw. Sci. and Eng., vol. 7,
no. 4, pp. 2155-2164, 2020.

D. Banfi, O. Mehani, G. Jourjon, L. Schwaighofer, and R. Holz,
“Endpoint-transparent multipath transport with software-defined net-
works,” in Proc. LCN, Dubai, UAE, Nov. 2016, pp. 307-315.

W. Wang, W. He, and J. Su, “M2sdn: Achieving multipath and mul-
tihoming in data centers with software defined networking,” in Proc.
IEEE Int. Symposium on Quality of Service, Portland, USA, Jun. 2015,
pp. 11-20.

Y. Cheng and X. Jia, “NAMP: Network-aware multipathing in software-
defined data center networks,” IEEE/ACM Trans. on Netw., vol. 28, no. 2,
pp. 846-859, 2020.

C. Krihenbiihl, S. Tabaeiaghdaei, C. Gloor, J. Kwon, A. Perrig,
D. Hausheer, and D. Roos, “Deployment and scalability of an inter-
domain multi-path routing infrastructure,” in Proc. Int. Conf. on Emerg.
Netw. Exp. and Technol., 2021, pp.126—140.

T. Zhang, Y. Lei, Q. Zhang, S. Zou, J. Huang, and F. Li, “Fine-grained
load balancing with traffic-aware rerouting in datacenter networks,” J.
of Cloud Comput., vol. 10, mno. 1, pp. 1=20, 2021.

F. Yang, Q. Wang, and P. D. Amer, “Out-of-order transmission for
in-order arrival scheduling for multipath TCP,” in Proc. Int. Conf. on
Advanced Inf. Network. and Appl. Workshops, Victoria, May 2014, pp.
749-752.

A. Singh, C. Goerg, A. Timm-Giel, M. Scharf, and T.-R. Banniza, ‘“Per-
formance comparison of scheduling algorithms for multipath transfer,” in
Proc. IEEE GLOBECOM, Anaheim, USA, Dec. 2012, pp. 2653-2658.
H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS:
An OpenFlow controller design for multimedia delivery with end-to-
end Quality of Service over Software-Defined Networks,” in Proc. of
the Asia Pacific Signal and Information Processing Association Annual
Summit and Conf., CA, USA, Jan 2012, pp. 1-8.

S. Sharma, D. Staessens, D. Colle, D. Palma, J. Goncalves,
R. Figueiredo, D. Morris, M. Pickavet, and P. Demeester, “Implementing
quality of service for the software defined networking enabled future
Internet,” in Proc. IEEE European Workshop on Software Defined Netw.,
Budapest, Hungary, Dec 2014, pp. 49-54.

N. Saha, S. Bera, and S. Misra, “Sway: traffic-aware QoS routing
in software-defined I0T,” IEEE Trans. on Emerg. Topics in Comput.,
vol. 16, no. 6, pp. 390 — 401, 2018.

R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam,
S. Mohan, and R. B. Bobba, “End-to-end network delay guarantees
for real-time systems using SDN,” in Proc. IEEE Real-Time Syst.
Symposium, Paris, France, Feb. 2017, pp. 231-242.

[26]

[27]

[28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(371

(38]

[39]

[40]

J. Yan, H. Zhang, Q. Shuai, B. Liu, and X. Guo, “HiQoS: An SDN-based
multipath QoS solution,” China Commun., vol. 12, no. 5, pp. 123-133,
2015.

S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet, “Adaptive and
reliable multipath provisioning for media transfer in SDN-based overlay
networks,” Comput. Commun., vol. 106, pp. 107-116, 2017.

C. Lin, Y. Bi, H. Zhao, Z. Liu, S. Jia, and J. Zhu, “DTE-SDN: A dynamic
traffic engineering engine for delay-sensitive transfer,” IEEE Internet of
Things J., vol. 5, no. 6, pp. 5240-5253, 2018.

N. Farrugia, V. Buttigieg, and J. A. Briffa, “A globally optimised
multipath routing algorithm using SDN.” in Proc. IEEE Conf. on
Innovation in Clouds, Internet and Netw. and Workshops, Paris, France,
Feb. 2018, pp. 1-8.

M. Bagaa, D. L. C. Dutra, T. Taleb, and K. Samdanis, “On sdn-driven
network optimization and qos aware routing using multiple paths,” IEEE
Trans. on Wireless Commun., vol. 19, no. 7, pp. 4700 — 4714, 2020
D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Flexible
traffic splitting in openflow networks,” IEEE Trans. on Netw. and Service
Manag., vol. 13, no. 3, pp. 407-420, 2016.

Q. Wang, G. Shou, Y. Liu, Y. Hu, Z. Guo, and W. Chang, “Implemen-
tation of multipath network virtualization with SDN and NFV,” [EEE
Access, vol. 6, pp. 32460-32470, 2018.

J. Y. Yen, “Finding the k- shortest loopless paths in a network,”
management Science, vol./17, no. 11, pp. 712-716, 1971.

S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1-5, 2016.

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
Internet topology zoo,” IEEE J. on Sel. Areas in Commun., vol. 29, no. 9,
pp. 1765-1775, 2011.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proc. ACM SIGCOMM
Workshop on Hot Topics in Netw., New York, USA, Oct. 2010, pp. 1-6.
A. Botta, A. Dainotti, and A. Pescapé, “A tool for the generation of
realistic network workload for emerging networking scenarios,” Comput.
Netw., vol. 56, no. 15, pp. 3531-3547, 2012.

A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wije-
nayake, A. Vishwanath, and V. Sivaraman, “Characterizing and classi-
fying IoT traffic in smart cities and campuses,” in Proc. IEEE INFOCOM
Workshop, Atlanta, USA, May 2017, pp. 559-564.

S. Kamath, A. Srivastava, P. Kamath, S. Singh, and M. S. Kumar, “Ap-
plication aware multiple constraint optimal paths for transport network
using SDN,” IEEE Trans. on Netw. and Service Manage., vol. 18, no. 4,
pp. 43764390, 2021.

P. Sarigiannidis, T. Lagkas, S. Bibi, A. Ampatzoglou, and P. Bellavista,
“Hybrid 5G optical-wireless SDN-based networks, challenges and open
issues,” IET Netw., vol. 6, no. 6, pp. 141-148, 2017.

