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Abstract—Edge computing with network slicing enables 5G
networks to meet the diverse and stringent requirements of new
services and applications. We study the problem of admitting
network slice requests and serving currently active slices in the
5G edge network, while avoiding active slice redistributions in the
network. We pose it as a constrained optimization problem that
seeks to maximize the total reward or revenue to the network
operator from serving the new and active slices minus a term
that penalizes slice redistributions in the network. We propose
a three-phase polynomial-time, greedy, heuristic approach called
RESET to solve this NP-hard problem. The first phase employs
a cost function that determines the order in which new slice
requests and a fraction of the active slices are served. It takes into
account the bandwidth, storage, and computing requirements of
a slice request. The second phase selects an edge cloud (EC)
to assign an admitted request based on the residual bandwidth
of its incoming links, and storage and computing resources at
the EC. The last phase determines the forwarding path to route
the traffic associated with the slice request to the selected EC.
Extensive simulation results show that RESET achieves a total
reward that is competitive with the optimal solution and is
higher than benchmark schemes, while requiring far fewer slice
redistributions.

Index Terms—5G, Network slicing, Edge network, Resource
allocation, Redistribution, Quality-of-service, Optimization

I. INTRODUCTION

5G communications has led to the emergence of new
services and applications that are broadly categorized as
enhanced mobile broadband (eMBB), ultra reliable low la-
tency communications (uRLLC), and massive machine type
communications (mMTC). This includes applications such as
video streaming with high throughput, virtual reality with
low latency, and factory automation with high reliability.
These new services and applications have diverse and strin-
gent quality-of-service (QoS) requirements that range from
high bandwidth to ultra-low latency and high reliability. The
bandwidth requirements of these services range from 1 Mbps
to 1 Gbps, the latency requirements range from 10 to 100
ms, and the reliability guarantees range from 99.999% to
99.9999999% [1], [2]. Network operators can no longer sup-
port such diverse requirements using the traditional ‘one-size
fits all’ network architecture.

Network slicing addresses this challenge. It creates multi-
ple logical networks that utilize the same physical network
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infrastructure [3]. Consequently, network operators can create
and deploy network slices dynamically depending on the
requirements of the slice requests that arrive. This flexibility
has motivated a lot of work on resource management and
slicing at 5G radio access network (RAN), and transport and
core networks [4], [5]. Recently, network slicing has been
combined with edge computing to meet the demanding key
performance indicators of 5G networks [6], [7].

With the integration of the edge computing framework, the
5G network typically comprises of fronthaul, midhaul, and
backhaul networks [8], as depicted in Figure 1. The fronthaul
network refers to the 5G RAN, and the backhaul network
refers to the 5G core network. The midhaul network refers
to the 5G edge network that comprises of layer two and
layer three networking devices and edge clouds (ECs). The
links between the networking devices provide bandwidth to
route requests in the network. The ECs provide networking
resources such as computing and storage. Service requests
from users are either served by an EC or forwarded to the
backhaul/core network.

Fig. 1: 5G network slicing architecture consisting of an
eMANO stack, fronthaul, midhaul, and backhaul. The midhaul
consists of edge nodes and edge clouds.

In this work, we focus on 5G edge network slicing and
resource management. We consider ETSI’s network manage-
ment and orchestration (MANO) framework [9] that consists
of a service manager, a network slice manager, and an infras-
tructure manager for deploying network slices. A network slice
consists of virtual network functions (VNFs) that serve the
applications associated with the slice. For example, a network
slice with a video streaming application consists of two VNFs
– a video optimizer and a firewall. Each VNF requires a certain
amount of storage and computing resources. Furthermore, each
slice has a bandwidth requirement to route the slice-specific
requests through the VNFs. At the edge network, we have
an edgeMANO (eMANO) that places the VNFs at the ECs
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and orchestrates the network slices taking into account the
available network resources and slice-specific requirements.

A few works have recently focused on 5G edge net-
work slicing [10]–[12]. These works focus primarily on re-
ward/revenue maximization given the network resources and
slice requirements. However, they do not take into account the
issues associated with active slice redistribution or migration
of their VNFs from one location to another when new service
requests arrive. Specifically, an active slice may need to be
redistributed to free up resources at a bottleneck EC or link
when a new request arrives to maximize the total reward or
revenue of a network operator.

A slice redistribution entails significant operational
costs [13]. First, migrating VNFs associated with an active
slice takes time and consumes storage. Second, both stateful
and stateless migrations of VNFs pose significant challenges
due to the above migration costs and inter-state dependency
of the VNFs, respectively. Third, maintaining the network
connection during the migration is challenging as additional
bandwidth is required to seamlessly migrate the VNFs from
one location to another. Moreover, the network slice re-
distribution process also requires coordination between the
network slice and infrastructure managers. Consequently, the
cost associated with slice redistributions needs to be accounted
for by a policy that determines whether to admit new slice
requests and whether to redistribute some of the active slices
to facilitate this. Another important to note is that the existing
works assume that users are one-hop away from the ECs.
However, in a practical edge computing framework, the users
may be located multiple hops away from the ECs.

In this paper, we study edge network slicing as a reward
maximization problem while introducing a penalty term that
incentivizes the network orchestrator to reduce the number of
slice redistributions. The objective function to be maximized is
framed as the difference between a term that equals the total
reward obtained by serving new and existing slice requests,
while satisfying the network resource and slice-specific QoS
constraints, and a penalty term that increases as the number of
active slice redistributions increases. As the optimization prob-
lem turns out to be NP-hard, we propose a greedy, heuristic
approach called RESET to solve the problem in polynomial
time. RESET first sets aside a fraction of the active slices for
possible redistribution or even dropping. These active slices
and new requests are then admitted into the network using a
procedure that consists of three phases: a) a request selection
phase that orders and admits the new slice requests, b) an EC
selection phase to assign an EC for a given slice request, and
c) a forwarding path selection phase to select the route from
the source to the selected EC. We present extensive simulation
results that show that the proposed approach achieves a total
reward that is competitive with the optimal solution and is
higher than benchmark schemes, while requiring far fewer
slice redistributions.

The rest of the paper is organized as follows. Section II
discusses the existing works in the context of network slicing
in 5G. Section III presents the detailed system model and

the optimization problem. Section IV presents the proposed
approach with algorithms. The performance of the proposed
approach is benchmarked in Section V. Finally, we present our
conclusions and some future research directions in Section VI.

II. RELATED WORK

We now discuss works that focus on slicing and resource
management at 5G edge networks [10]–[12], [14]. Castellano
et al. [10] study resource allocation for network slices in
an edge computing framework as a revenue maximization
problem. They propose an online voting approach to assign
network resources to the slices in a distributed manner. Liu
and Han [11] propose a distributed resource orchestration
scheme for network slicing in a cellular network. The authors
consider radio resources at the RAN and computing resources
at the edge servers in the network. The resource orchestrator
manages these resources to facilitate cross-domain functional
isolation between the network slices. Complete isolation be-
tween network services is assumed, i.e., the performance of
one service request is assumed to be unaffected by other ser-
vice requests in the network. However, in a practical scenario,
the performance of one service is affected by other services
in the network [12]. The authors in [12] propose an edge
network slicing scheme to maximize revenue considering the
dependencies between service requests in a 5G edge network.

The works closest to ours are [10], [12] as they also focus on
maximizing the total reward or revenue. However, these works
do not penalize active slice redistributions, and they assume
that the users are one-hop away from the ECs and consider
only single-hop routing to allocate bandwidth resources. On
the other hand, we consider multi-hop routing for serving
network slices, costs associated with slice redistributions, and
bandwidth, computation, and storage constraints.

III. NETWORK MODEL

5G Edge Network: We represent the 5G edge substrate
network as an undirected graph G(V,L), where V is the set
of edge nodes and L is the set of links between the nodes
in the network. Each link (i, j) ∈ L has a bandwidth Bi,j
to forward traffic. Furthermore, some of the edge nodes offer
computing and storage facilities. Such edge nodes are called
ECs, as shown in Figure 1. The set of ECs is denoted as
V ′

. Thus, the non-EC nodes, V \ V ′
, simply forward the

traffic associated with the slices being served by the network.
We consider bandwidth, computing, and storage resources
in the edge network, where each link is associated with a
bandwidth, and each EC is associated with computing and
storage resources. All the networking resources are virtualized.

Slice Request: A slice request is characterized by band-
width, computing, and storage requirements. The computing
and storage requirements are determined by the VNFs as-
sociated with the slice, examples of which are discussed in
Section I. The resources required by a VNF depend on the
network slice type. They are specified in terms of computing
and storage requirements [15], and a bandwidth requirement
for being routed in the network. Furthermore, each slice



request is also associated with a reward, a source edge node,
and an active time, which is the duration for which it stays
in the network. Mathematically, a slice request r ∈ R is
represented as a six-tuple (b[r], c[r], d[r], ζ [r], s[r], τ [r]), where
b[r], c[r], and d[r] denote the bandwidth, computing, and
storage requirements, respectively. The symbols ζ [r], s[r], and
τ [r] denote the reward, source edge node, and active time of
the request r, respectively. Slice requests can arrive at different
and random times to the network.

A. Optimization Problem Formulation

Objective: We are given a 5G edge network that consists
of edge nodes and links, each having a bandwidth resource,
and ECs, each having computing and storage resources. Fur-
thermore, we are given slice requests, each with bandwidth,
computing and storage requirements, a reward, a source node,
and an active time. Additionally, at any point in time, we
are given the set of active slice requests that are currently
being served by the network. The objective is to optimally
allocate bandwidth, computing, and storage resources to the
slice requests so that the total reward minus the penalty
associated with slice redistributions is maximized while ad-
hering to the constraints on network resources and slice-
specific QoS requirements. In each time slot, the network
orchestrator needs to determine which new slice requests to
admit into the network and which active slices to redistribute
to different ECs or to drop. Such redistributions can free
up resources in bottlenecked ECs and forwarding links, and
enable them to serve more requests, which increases the
reward. Mathematically, the objective function P is given by

P = max
{ reward︷ ︸︸ ︷∑
r∈R

∑
k∈V′

ζ [r]x
[r]
k −

redistribution penalty︷ ︸︸ ︷
σ
∑
r∈R̃

∑
k∈V′

f(x
[r]
k , x̃

[r]
k )
}
. (1)

The first term denotes the total reward obtained by admitting
the slice requests. Here, x[r]k is a binary variable that equals
1 when the VNFs associated with the slice request r ∈ R
are placed at EC k ∈ V ′

, and is 0 otherwise. The second
term represents the total penalty associated with slice redis-
tributions. The redistribution penalty, which applies only to
active requests, is a function of the current placement, x[r]k ,
and the previous placement, x̃[r]k , ∀r ∈ R̃, where the set R̃
denotes the set of active slices in the network. We note that
this formulation enables any penalty function to be used.

Constraints: The following constraints need to be satisfied.∑
r∈R

d[r]x
[r]
k ≤ Dk,∀k ∈ V

′

∑
r∈R

c[r]x
[r]
k ≤ Ck,∀k ∈ V

′

∑
r∈R

b[r]y
[r]
i,j ≤ Bi,j ,∀(i, j) ∈ L∑

k∈V′

x
[r]
k ≤ 1

x
[r]
k , y

[r]
i,j ∈ {0, 1}

(2a)

(2b)

(2c)

(2d)

(2e)

∑
j∈V

y
[r]
i,j −

∑
j∈V

y
[r]
j,i =


∑
k∈V′

x
[r]
k , if i = s[r] ∈ V (3a)

−x[r]k , if i = k ∈ V
′

(3b)
0, otherwise. (3c)

Each EC has a certain amount of storage to meet the storage re-
quired by the VNFs of the slice requests it hosts. Consequently,
the storage capacity constraint is given in (2a). Each slice
request hosted by an EC also requires computing resources
based on the associated VNFs. Therefore, the computing
constraint is given in (2b). Once a slice request is admitted, the
traffic through the slice needs to be forwarded to the selected
EC. Doing so utilizes the bandwidth on the links that constitute
the route from source edge node to the EC. The link capacity
constraint is given in (2c), where y[r]i,j is a binary variable that is
1 when link (i, j) ∈ L is utilized to route the traffic associated
with the slice request r ∈ R, and is 0 otherwise. Each slice
request r ∈ R is served by at most one EC at a time, as
denoted by (2d). The assignment variables for EC selection,
x
[r]
k , and link utilization, y[r]i,j , are binary, which are presented

in (2e). The traffic in the substrate-slice network must follow
the flow conservation rule for the outgoing and incoming flows
in it [16], as presented in (3). The first case (3a) applies to the
source s[r] ∈ V of the slice request r ∈ R. It states that the
total outgoing traffic from the source s[r] is equal to the total
traffic received by all the ECs in the network. Consequently,
if none of the ECs can be assigned to serve the request r, i.e.,∑
x
[r]
k = 0,∀k ∈ V ′

, the outgoing traffic from the source s[r]

is zero. The second case (3b) states that the traffic received at
an EC k is either one or zero depending on whether the request
r is served by the EC. Finally, the third case (3c) states that the
difference between the outgoing traffic and incoming traffic at
an intermediate edge node i ∈ V is zero in order to satisfy the
flow conservation rule.

The above optimization problem is a special case of the
multi-constraint multiple knapsack problem, which is NP-hard.
We refer the interested reader to [17] for details about the NP-
hardness proof. Therefore, solving the optimization problem
for a large number of slice requests and large networks is
computationally prohibitive. In the next section, we propose a
low-complexity, polynomial-time, greedy, heuristic approach
called RESET.

IV. PROPOSED APPROACH: RESET

We solve the slice request admission and placement problem
in three phases, namely, request selection phase, EC selection
phase, and forwarding path selection phase. These address
three fundamental questions: in which order should the slice
requests be admitted, which EC should fulfil the computing
and storage demands of a request, and which path should be
used for forwarding traffic of the slice while satisfying its
bandwidth requirements. Prior to these phases, we identify a
fraction of the active slice requests for potential redistribution.
We discuss the phases in detail below.



A. Identify Active Slices for Potential Redistribution

We first shortlist the active slice requests. The requests are
ordered using a cost function, which we define next. The
resources assigned to a pre-specified fraction (1 − δ), where
0 ≤ δ ≤ 1, of the requests at the top of the ordered list are
left untouched. The remaining requests are combined with the
set of new requests, which means that their network slices
can be redistributed or dropped. For ease of description, we
shall refer to these slices as new slice requests as well. Here,
δ is a system parameter. The larger the value of δ, the higher
the reward but also the higher the redistribution penalty. We
investigate the trade-offs associated with δ in Section V-A.

B. Request Selection

The request selection phase decides the order in which new
requests are admitted to the network. Each request r ∈ R re-
quires a bandwidth b[r], computing resources c[r], and storage
resources d[r]. We design the following weighted cost function
that determines a cost, θ[r], of r in terms of the resources it
requires:

θ[r] = αreq
b[r]

bmax
+ βreq

d[r]

dmax
+ γreq

c[r]

cmax
, (4)

where αreq ≥ 0, βreq ≥ 0, and γreq ≥ 0 are predefined
weights that accord different priorities to bandwidth, storage,
and computing resource requirements, respectively, and αreq+
βreq + γreq = 1. The constants bmax, dmax, and cmax denote the
maximum bandwidth, storage, and computing requirements,
respectively, which are calculated from the set of new slice
requests.

The edge controller in the eMANO framework computes
the ratio ζ[r]

θ[r]
for each new request r, where ζ [r] is the reward.

It sorts this ratio in the descending order. Then, starting from
the request with the largest ratio, each request is sequentially
checked to determine whether all its network resource and
slice-specific QoS constraints, which are given in (2a)–(3c),
can be met. If this is so, then the request is admitted. Else, it
is dropped.

C. EC Selection

Each EC has computing and storage resources that it utilizes
to place the VNFs associated with the slice requests it serves.
Therefore, for a request r admitted from the sorted list
generated by the request selection phase (cf. Section IV-B), the
edge controller determines the candidate ECs, Ṽ ′

= f(V ′
, r),

which can fulfil the required storage and computing resources.
In case Ṽ ′

= ∅, then the request is dropped. To select an EC
k from Ṽ ′

, we design a cost function φk as

φk = αec

∑
(i,k)∈LBi,k∑
(i,k)∈LB

res
i,k

+ βec
Dk

Dres
k

+ γec
Ck
C res
k

,∀i ∈ V, (5)

where αec ≥ 0, βec ≥ 0, and γec ≥ 0 are predefined constants
that determine the relative importance of the bandwidth, stor-
age, and computing resources, respectively, of the EC nodes,
and αec+βec+γec = 1. Furthermore,

∑
(i,k)∈LBi,k represents

the total bandwidth of all incoming links to the candidate EC,

k ∈ Ṽ ′
. The constants Bres

i,k, Dres
k , and C res

k denote the residual
bandwidth of the link (i, k) ∈ L, residual storage of EC k, and
residual computing resources of EC k, respectively. Thus, an
EC with lower residual resources is associated with a higher
cost. The EC with the lowest cost is selected to place the
VNFs associated with the slice request. This process starts
with the admitted request at the top of the sorted list in the
request selection phase and ends with the admitted request at
the bottom of the list. As mentioned, active slices that can
be redistributed are also considered. If the current assignment
differs from the previous one, we determine the penalty as
per (1), which depends on σ and the penalty function.

D. Forwarding Path Selection

Once an EC is selected for a given slice request, as described
in Sections IV-B and IV-C, we search for a route from
source edge node to the selected EC through which the traffic
associated with the slice can be forwarded to satisfy the
slice’s bandwidth requirement. The forwarding path selection
algorithm is presented in Algorithm 1. The eMANO first
prunes all the links from the substrate network that do not
satisfy the bandwidth requested by the slice request (refer to
Steps 1 and 7). Hence, it obtains a residual substrate network.
Then, Dijkstra’s weighted shortest path algorithm is used to
determine the forwarding path (refer to Step 3).

Algorithm 1 Forwarding path selection algorithm
Inputs: Graph, G(V,L), with initial link capacity, Bi,j , and

residual link capacity, Bres
i,j , ∀(i, j) ∈ L;

Bandwidth demand b[r] and source s[r] of request r;
Selected EC: k

Output: Forwarding path from source s[r] to EC k
1: Residual Graph G′

(V,L′
) = RESIDUAL GRAPH(G, b[r])

2: link weight(i, j) = Bi,j

Bres
i,j

, ∀(i, j) ∈ L′
. link weight

3: path = Dijkstra Shortest Path(G′
, s[r], k, link weight)

4: function RESIDUAL GRAPH(G, b[r])
5: for (i, j) in G.edges do
6: if Bres

i,j < b[r] then . demand cannot be satisfied
7: Prune link (i, j) from G . link is pruned

return Residual graph G(V,L′
)

Algorithm 2 presents the proposed greedy heuristic al-
gorithm for determining which slice requests to serve to
maximize the total reward. In it, Steps 1 and 2 include a
fraction of the active slice requests, which can be redistributed,
into the set of new requests. Step 3 sorts the requests in the
descending order based on the cost function in (4). Step 6
checks for the EC with the lowest cost using (5). Based on the
path selection algorithm (refer to Algorithm 1), the request is
admitted and the network capacity is updated. If a candidate
EC or a forwarding path is not found, then the request is
dropped. Finally, Steps 16–19 check for active slices that were
redistributed and computes the penalty term. The computation
time complexity of RESET is:



[O(|R| + |R|log|R|)]︸ ︷︷ ︸
request selection

+
[
O(|R|) × [O(V

′
|L|+|V

′
|)︸ ︷︷ ︸

EC selection

+O(|L|+|V|(|L| + |V|log|V|))︸ ︷︷ ︸
path selection

]
]
.

Algorithm 2 Greedy heuristic algorithm for reward maximiza-
tion
Inputs: Network: G(V,L) with Bi,j , Bres

i,j , ∀(i, j) ∈ L; Set
of ECs V ′

; Set of active requests R̃ with x̃[r]k ∀r ∈ R̃;
Request: Set of received requests R;

Output: Assign slice requests to maximize total reward
1: R̃′ ← f(R̃, δ) . active slices that can be redistributed
2: R ← R∪ R̃′

3: R′ ← R.SortDecreasing() using ζ[r]

θ[r]

4: for request r in R′
do . from sorted list

5: k ← EC with minimum cost using (5)
6: if k then . candidate EC found
7: path ← forwarding path using Algorithm 1
8: if path then . forwarding path found
9: x

[r]
k = 1 . request is assigned

10: total reward ← total reward + ζ [r]

11: UPDATE NETWORK(G, path, r, k)
12: else
13: Drop request r . no forwarding path found
14: else
15: Drop request r . no candidate EC found
16: for r ∈ R̃′

do . check for active slice redistribution
17: if check redistribution(x[r]k , x̃[r]k ) then
18: total reward ← total reward - σf(x[r]k , x̃

[r]
k )

19: redistribution ← redistribution + 1
20: function UPDATE NETWORK(G, path, r, k)
21: for (i, j) in path do
22: Bres

i,j ← (Bres
i,j − b[r]) . link capacity updated

23: Dk ← (Dk − d[r]) . storage resource updated
24: Ck ← (Ck − c[r]) . computing resource updated

V. PERFORMANCE EVALUATION

We evaluate the performance of RESET and compare it
with the optimal solution to ascertain its efficacy. Table I
presents the parameters and their values used for evaluating
the performance. We consider the AttMpls topology from the
Internet topology Zoo [18] to create the edge nodes and links
between them. We also consider the scale-free topology [19]
to see the performance of RESET compared to the optimal
solution. The results with the scale-free topology, which are
not shown due to space constraints, are qualitatively similar.
The ECs are selected as follows. The edge nodes are sorted
in the descending order of their degrees. A fraction η of the
nodes with the largest degrees in this sorted list are designated
as ECs. As a real-dataset of network slicing is difficult to get,
we set the values of network resources (bandwidth, computing,
and storage) and slice-specific bandwidth requirements based

on a careful study of the literature [12], [15], [20]. These
values are generated randomly from the range specified in
Table I. Furthermore, the slice-specific computing and storage
demands are generated based on the associated VNFs [15].
As mentioned in Section III, the UPF requirements of dif-
ferent slices can be different. To generate the different UPF
requirements, we categorize the UPFs associated with a slice
request into two sets F1 and F2, as shown in Table I. The UPF
in F1 is always selected for each slice request. For example,
the video optimizer (VO) UPF is always present in all eMBB
slice requests. Whereas, in F2, we select one to two UPFs
randomly using the random.sample() method available
in Python. The reward value and active time of a slice request
are given in Table I. The values of the predefined constants
for the cost functions for request selection and EC selection,
and the redistribution penalty are also given in Table I. We use
the following penalty function for performance evaluation:

f(x
[r]
k , x̃

[r]
k ) =

(
x
[r]
k − x̃

[r]
k

)2
. (6)

Thus, the penalty increases as the number of slice redistribu-
tions increases.

We take an average of 20 runs to present the results
with a 95% confidence interval [21]. The slice requests are
generated using a Poisson process, whose arrival rates we vary.
Altogether, we generate 500 slice requests in a single run. The
new slice requests are considered for admission once every 10
seconds. The simulation results are reported in two phases:
a) optimal vs. RESET in Section V-A; and b) benchmark
schemes vs. RESET in Section V-B. We consider the following
performance metrics to benchmark the performance of RESET:
total reward, percentage of redistributions, percentage of ad-
mitted requests, and running time. The percentage of admitted
requests is a metric of interest to service providers who wish
to accommodate as many slice requests as possible in the
network.

A. Results: Optimal vs. RESET

To get the optimal solution, we use the IBM-CPLEX
solver [22]. The simulation is conducted in a machine with
the Intel Xeon CPU and 128 GB RAM. Given the exponential
complexity of the optimal solution, we consider only η = 10%
of the total number of nodes in the network to be ECs. We
show results when up to 5% and 10% of the active slices can
be redistributed.

1) Reward: Figure 2 compares the total reward obtained
using the optimal solution and RESET. We show results for two
values of the penalty factor σ: 0 and 0.5. For both values of σ,
we see that RESET is competitive with the optimal solution; its
total reward is within 15–25% of that of the optimal solution.
The total reward decreases as the arrival rate increases. This
is because the number of time slots decreases as the arrival
rate increases since each run considers a total of 500 slice
requests. The total reward of RESET (δ = 10%) with zero
penalty is slightly more than that of RESET (δ = 5%). This is
intuitive since more redistributions can occur as δ increases.



TABLE I: Simulation settings

Network Request

Parameter Value Type Band.
(Mbps) Reward Active

time
UPF Constants VNF CPU Storage

(GB)
F1 F2 α β γ IDS 2 10

Topology AttMpls eMBB 30–100 6–10 20–100 VO IDS, FR, NAT, TM 0.2 0.4 0.4 FR 2 5
Percentage ECs (η) 10% and 20% uRLLC 5–15 8–10 5–20 IDS VO, FR, NAT, TM 0.33 0.33 0.33 NAT 1 2
Link bandwidth 1–2 Gbps mMTC 0.5–1.5 1 1–5 TM VO, IDS, FR, NAT 0.4 0.4 0.2 TM 1 2
EC CPUs 72–100 Percentage of active slice redistribution (δ) 5% and 10% VO 2 20
EC storage 2–3 TB Redistribution penalty (σ) 0 and 0.5 NAT: network address translation
Predefined Constant α: 0.33; β: 0.33; γ: 0.33 VO: video optimizer; TM: traffic monitoring; IDS: intrusion detection; FR: firewall
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Fig. 2: Total reward
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However, the reverse is true when σ = 0.5. Now, the total
reward of RESET (δ = 5%) exceeds that of RESET (δ = 10%).

2) Percentage of Slice Redistributions: Figure 3 shows
the percentage of slice redistributions for two values of the
penalty factor σ. We see that the percentage of slices that
are redistributed in the optimal solution is very high when
σ = 0. For small arrival rates, more than 100% of the slices
can be redistributed. This occurs because an active slice can be
redistributed multiple times during the time it is served by the
network. However, the percentage of redistributions decreases
by an order of magnitude when σ is increased to 0.5. In
contrast, the percentage of redistributions is markedly lower in
RESET. This is because no more than a δ fraction of the active
slices can be redistributed. However, as we saw in Figure 2,
even with a low slice redistribution percentage, RESET achieves
a reward that is competitive with the optimal solution. The
percentages of slice redistributions increase as δ increases from
5% to 10% as more active slices are redistributed. Lastly, we
observe that the percentage of redistribution decreases as the
arrival rate increases. This occurs because it takes less time
for 500 requests to arrive as the arrival rate increases.

3) Admitted Requests: Figure 4 shows the percentage of
the newly admitted slice requests. Interestingly, we see that
the percentage of admitted requests is almost equal for both
schemes.

In summary, we see that RESET yields a reward competitive
with the optimal solution, but with far fewer redistributions.
Furthermore, we note that the computation time of RESET is
smaller by two orders of magnitude than that of the optimal
solution, as the optimization problem in (1) is NP-hard.

B. Extension to Large Scenarios
We now study the performance of RESET in large deploy-

ment scenarios. For this, we conduct the simulations with

more ECs in the network. Since the existing edge slicing
schemes [10], [12] consider only single-hop routing, we cannot
compare RESET with them. Instead, we compare RESET with
two other benchmark schemes, namely, Reward and FCFS. In
Reward, the requests are prioritized based on their reward
values without considering their bandwidth, computing, and
storage demands. On the other hand, in FCFS, the requests
are admitted in the order they are received. Thus, the request
selection phase (cf. Section IV-B) of RESET is different from
that of Reward and FCFS. However, the EC selection (cf.
Section IV-C) and path selection (cf. Section IV-D) phases
are the same for all three schemes. Furthermore, we set the
redistribution percentage of active slices, δ, as 5% in all
schemes.

1) Reward: Figure 5 compares the total reward of the three
schemes for two values of σ and two values of η. With more
ECs in the network, the reward of all three schemes increases
as more number of requests are served. We see that RESET
achieves a higher reward than Reward and FCFS. This is
because RESET admits the requests based on the ratio of the
reward and the resource cost in serving the request. On the
other hand, Reward admits a request based on its reward value
irrespective of the network resources it demands. This leads to
a shortage of network resources over time and a lower reward.
In contrast, FCFS admits the requests sequentially in the order
they arrive until it runs out of either bandwidth, storage, or
computing resources. Its reward is lower as it does not take
the reward value into account while admitting slices.

2) Percentage of Slice Redistributions: Figure 6 compares
the percentage of slice redistributions of the three schemes for
different values of η. We see that the percentage of redistribu-
tions with FCFS is lower than that of the RESET and Reward.
FCFS always admits the slice requests in the order they are
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received. Therefore, the active slices that were redistributed are
considered before the new requests. This, in turn, reduces the
percentage of slice redistributions. On the other hand, RESET
admits the redistributed active slices based on their reward
value and resource cost. Therefore, a redistributed active slice
may not be assigned to the EC to which it was assigned earlier.
This, in turn, increases the percentage of slice redistributions
with RESET. Similarly, Reward also entails a higher percentage
of slice redistributions than FCFS as it admits slice requests
based on their reward values.

3) Admitted Requests: Figure 7 compares the percentage
of admitted requests of the three schemes for different values
of η. We see that the percentage of admitted requests of RESET
and FCFS is comparable while that of Reward is lower. This is
because Reward does not consider the resource requirements
of the slice requests while admitting them. This leads to a
shortage of network resources over time.

VI. CONCLUSION

We studied the problem of edge network slicing in 5G
with the goal of maximizing the total reward obtained from
admitting new slice requests while also controlling the fraction
of active slices that get redistributed. We proposed a greedy,
polynomial-time, heuristic approach called RESET to solve the
NP-hard problem. RESET consists of three phases – request
selection, EC selection, and forwarding path selection. In the
request selection phase, we designed a cost function to decide
the order in which new slice requests are admitted. The EC
selection phase determines the EC that fulfils the computing
and storage demands of a slice request. The forwarding
path selection phase determines the forwarding path to route
the traffic associated with the admitted slice requests in the
networks. We numerically observed that RESET achieved a
performance close to the optimal solution but entailed far
fewer slice redistributions. It also achieved a higher reward
than the benchmark schemes. As a future extension of this
work, we plan to study the cross-domain network slicing
problem, in which the slicing occurs over the 5G RAN, edge,
and core networks.
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